Raleigh waves radiated from a point source at the boundary free from tensions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 132-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider such solutions of the elastic theory equations that suffer a discontinuity only at the boundary free from tensions (Raleigh waves). We find initial data for the complex intensity of the surface Raleigh waves in the two simple media. The first elastic medium fills in the half-space with Lame parameters and density depending on the depth. The second medium is bounded by a curve determined by natural equation. The parameters of the second medium depend on the arc-length along the curve. Bibl. – 12 titles.
@article{ZNSL_2008_354_a5,
     author = {N. Ya. Kirpichnikova},
     title = {Raleigh waves radiated from a~point source at the boundary free from tensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--149},
     year = {2008},
     volume = {354},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a5/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
TI  - Raleigh waves radiated from a point source at the boundary free from tensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 132
EP  - 149
VL  - 354
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a5/
LA  - ru
ID  - ZNSL_2008_354_a5
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%T Raleigh waves radiated from a point source at the boundary free from tensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 132-149
%V 354
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a5/
%G ru
%F ZNSL_2008_354_a5
N. Ya. Kirpichnikova. Raleigh waves radiated from a point source at the boundary free from tensions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 132-149. http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a5/

[1] Lord Rayleigh (Jonn William Strutt), “On waves propagated along the plane surface of an elastic solid”, Proc. London Math. Soc., 17 (1885), 4–11 | DOI | Zbl

[2] H. Lamb, “On the propagation of Tremors over the surface of an elastic solid”, Philos. Trans. Roy London Soc. Ser. A, 203 (1904), 1–42 | DOI

[3] F. Frank, R. Mizes, Differentsialnye i integralnye uravneniya matematicheskoi fiziki, Gostekhizdat, M., 1937

[4] V. M. Babich, “O rasprostranenii voln Releya po poverkhnosti odnorodnogo uprugogo tela proizvolnoi formy”, Dokl. AN SSSR, 137:6 (1961), 1263–1267

[5] V. M. Babich, N. Ya. Rusakova (Kirpichnikova), “O rasprostranenii voln Releya po poverkhnosti neodnorodnogo uprugogo tela proizvolnoi formy”, ZhVMiMF, 2:4 (1962), 652–665 | MR | Zbl

[6] J. B. Keller, R. M. Lewis, B. D. Seckler, “Asymptotic solution of some diffraction problems”, Communs Pure and Appl. Math., 9:2 (1956), 207–265 | DOI | MR | Zbl

[7] A. S. Alekseev, V. M. Babich, B. Ya. Gelchinskii, “Luchevoi metod vychisleniya intensivnosti volnovykh frontov”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, 5, Izd-vo LGU, L., 1961, 3–35

[8] M. V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London A, 392 (1984), 45–57 | DOI | MR | Zbl

[9] V. E. Nomofilov, “O rasprostranenii kvazistatsionarnykh voln Releya v neodnorodnoi anizatropnoi uprugoi srede”, Zap. nauchn. semin. LOMI, 89, 1979, 234–245 | MR | Zbl

[10] V. M. Babich, N. Ya. Kirpichnikova, “A new approach to the problem of Rayleigh wave propagation along the surface of an inhomogeneous elastic body”, Wave Motion, 2:4 (1962), 652–665

[11] P. V. Krauklis, “K otsenke intensivnosti poverkhnostnykh voln Releya i Stounli na neodnorodnoi trasse”, Zap. nauchn. semin. LOMI, 15, 1969, 115–121 | MR | Zbl

[12] I. G. Petrovskii, “O skorosti rasprostraneniya razryvov proizvodnykh smeschenii na poverkhnosti neodnorodnogo uprugogo tela proizvolnoi formy”, Dokl. AN SSSR, 47:4 (1945), 258–261