Diffraction of an $H$-polarized surface wave by an abgular break of a~thin dielectric slab
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 100-111
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper reports the recent advance in applications of the Sommerfeld–Malyuzhinets technique to the diffraction problem of a surface wave by an angular break of a thin material slab. The solution is represented by the Sommerfeld intergrals which are then substituted into the boundary conditions. The unknown spectral functions satisfy coupled Malyuzhinets functional equations. The latter are then reduced to the Fredholm second kind integral equations which are solved numerically. The scattering diagram of the cylindrical wave arising from the edge of the structure is computed. Bibl. – 3 titles, fig. – 3.
@article{ZNSL_2008_354_a3,
author = {V. \`E. Grikurov and M. A. Lyalinov},
title = {Diffraction of an $H$-polarized surface wave by an abgular break of a~thin dielectric slab},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--111},
publisher = {mathdoc},
volume = {354},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a3/}
}
TY - JOUR AU - V. È. Grikurov AU - M. A. Lyalinov TI - Diffraction of an $H$-polarized surface wave by an abgular break of a~thin dielectric slab JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 100 EP - 111 VL - 354 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a3/ LA - ru ID - ZNSL_2008_354_a3 ER -
%0 Journal Article %A V. È. Grikurov %A M. A. Lyalinov %T Diffraction of an $H$-polarized surface wave by an abgular break of a~thin dielectric slab %J Zapiski Nauchnykh Seminarov POMI %D 2008 %P 100-111 %V 354 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a3/ %G ru %F ZNSL_2008_354_a3
V. È. Grikurov; M. A. Lyalinov. Diffraction of an $H$-polarized surface wave by an abgular break of a~thin dielectric slab. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 100-111. http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a3/