Boundary control and inverse problems: one-dimensional variant of the BC-method
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 19-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This is the first paper of the planned series under the common title “Boundary control method in inverse problems.” The aim of the series is systematic exhibition of an approach to inverse problems based upon their relations with control theory. The 1d-variant of the method is exhibited on the example of the classical problem of recovering the inhomogeneous string density, both dynamical and spectral setups of the problem being considered. The paper is written so that to serve as an introduction to the multidimansional BC-method: basic tools and constructions in use are available for the further generalization to multidimensional problems. Bibl. – 33 titles, fig. – 7.
@article{ZNSL_2008_354_a1,
     author = {M. I. Belishev},
     title = {Boundary control and inverse problems: one-dimensional variant of the {BC-method}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--80},
     year = {2008},
     volume = {354},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - Boundary control and inverse problems: one-dimensional variant of the BC-method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 19
EP  - 80
VL  - 354
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a1/
LA  - ru
ID  - ZNSL_2008_354_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%T Boundary control and inverse problems: one-dimensional variant of the BC-method
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 19-80
%V 354
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a1/
%G ru
%F ZNSL_2008_354_a1
M. I. Belishev. Boundary control and inverse problems: one-dimensional variant of the BC-method. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 37, Tome 354 (2008), pp. 19-80. http://geodesic.mathdoc.fr/item/ZNSL_2008_354_a1/

[1] S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Granichnoe upravlenie i matrichnaya obratnaya zadacha dlya uravneniya $u_{tt}-u_{xx}+V(x)u=0$”, Matem. sbornik, 182:3 (1991), 307–331 | MR | Zbl

[2] M. I. Belishev, “Ob odnom podkhode k mnogomernym obratnym zadacham dlya volnovogo uravneniya”, DAN SSSR, 297:3 (1987), 524–527 | MR

[3] M. I. Belishev, “Uravneniya tipa Gelfanda–Levitana v mnogomernoi obratnoi zadache dlya volnovogo uravneniya”, Zap. nauchn. semin. LOMI, 165, 1987, 15–20 | Zbl

[4] M. I. Belishev, Granichnoe upravlenie i prodolzhenie volnovykh polei, Preprint LOMI P-1-90, 1990

[5] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[6] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17 (2001), 659–682 | DOI | MR | Zbl

[7] M. I. Belishev, “How to see waves under the Earth surface (the BC-method for geophysicists)”, Ill-Posed and Inverse Problems, eds. S. I. Kabanikhin, V. G. Romanov, VSP, 2002, 67–84 | MR | Zbl

[8] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[9] M. I. Belishev, A. S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, S.-Pb. Gosudarstvennyi Universitet, S.-Pb., 1999

[10] M. I. Belishev, A. S. Blagovestchenskii, S. A. Ivanov, “Erratum to “The two-velocity dynamical system: boundary control of waves and inverse problems” [Wave Motion, 25 (1997), 83–107]”, Wave Motion, 26 (1997), 99 | DOI | MR | Zbl

[11] M. I. Belishev, S. A.Ivanov, “Kharakterizatsiya dannykh v dinamicheskoi obratnoi zadache dlya dvuskorostnoi sistemy”, Zap. nauchn. semin. POMI, 259, 1999, 19–45 | MR | Zbl

[12] M. I. Belishev, A. P. Kachalov, “Metod granichnogo upravleniya v spektralnoi obratnoi zadache dlya neodnorodnoi struny”, Zap. nauchn. semin. LOMI, 179, 1989, 14–22 | MR | Zbl

[13] M. I. Belishev, A. P. Kachalov, “Operatornyi integral v mnogomernoi spektralnoi obratnoi zadache”, Zap. nauchn. semin. POMI, 215, 1994, 9–37 | MR | Zbl

[14] M. I. Belishev, A. B. Pushnitskii, “K treugolnoi faktorizatsii polozhitelnykh operatorov”, Zap. nauchn. semin. POMI, 239, 1997, 45–60 | MR | Zbl

[15] M. I. Belishev, T. L. Sheronova, “Metod granichnogo upravleniya v dinamicheskoi obratnoi zadache dlya neodnorodnoi struny”, Zap. nauchn. semin. LOMI, 186, 1990, 37–49 | MR | Zbl

[16] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningradskogo Universiteta, L., 1980 | MR

[17] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Trudy MIAN im. V. A. Steklova, 115, 1971, 28–38 | Zbl

[18] M. S. Brodskii, Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[19] K. R. Davidson, Nest Algebras, Pitman Res. Notes Math. Ser., 191, Longman, London–New York, 1988 | MR | Zbl

[20] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izvestiya AN SSSR Ser. matem., 15 (1951), 309–360 | MR | Zbl

[21] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[22] B. Gopinath, M. M. Sondhi, “Determination of the shape of the human vocal tract from acoustical measurements”, Bell Syst. Tech. J., July (1970), 1195–1214

[23] B. Gopinath, M. M. Sondhi, “Inversion of the Telegraph Equation and the Synthesis of Nonuniform Lines”, Proceedings of the IEEE, 59:3 (1971), 383–392 | DOI | MR

[24] S. He, An explicit time-domain solution for the reflection from a stratified acoustic half-space obtained by the boundary control method, TRITA-TET 95-5, Dept. of Electromagnetic Theory, Royal Institute of Technology, Stockholm, December 1 1995

[25] I. S. Kac, M. G. Krein, “On the spectral functions of the string”, Amer. Math. Soc. Transl., 103:2 (1974), 19–102 | Zbl

[26] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR | Zbl

[27] M. G. Krein, “Reshenie obratnoi zadachi Shturma–Liuvillya”, DAN SSSR, 76:1 (1951), 21–24 | MR | Zbl

[28] M. G. Krein, “Ob obratnoi zadache dlya neodnorodnoi struny”, DAN SSSR, 82:5 (1952), 669–672 | MR | Zbl

[29] M. G. Krein, “Ob odnom metode effektivnogo resheniya obratnoi kraevoi zadachi”, DAN SSSR, 94:6 (1954), 987–990 | MR | Zbl

[30] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl

[31] D. L. Russell, “Controllability and stabilizability theory for linear partial differential equations”, SIAM Review, 20:4 (1978), 639–739 | DOI | MR | Zbl

[32] A. S. Avdonin, M. I. Belishev, “Inverse problem for nonselfadjoint Sturm–Liouvlle operator (BC-method)”, Control and Cybernetics, 25:3 (1996), 429–440 | MR | Zbl

[33] A. S. Blagovestchenskii, Inverse problems of wave precesses, VSP, Netherlands, 2001