Visibility metrics on the boundary at infinity for the complex hyperbolic plane
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 70-92
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct limiting spherical and horospherical metrics at the boundary at the infinity of the complex hyperbolic plane and prove that the limiting spherical metric is both the Carnot–Caratheodory metric and the visibility metric simultaneously. Bibl. – 6 titles.
@article{ZNSL_2008_353_a7,
author = {A. M. Kuznetsov},
title = {Visibility metrics on the boundary at infinity for the complex hyperbolic plane},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--92},
year = {2008},
volume = {353},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a7/}
}
A. M. Kuznetsov. Visibility metrics on the boundary at infinity for the complex hyperbolic plane. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 70-92. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a7/
[1] M. Bonk, O. Schramm, “Embeddings of Gromov hyperbolic spaces”, Geom. Funct. Anal., 10:2 (2000), 266–306 | DOI | MR | Zbl
[2] S. Buyalo, V. Schroeder, Elements of asymptotic geometry, EMS Monogr. in Math., Europ. Math. Soc., Zurich, 2007 | MR | Zbl
[3] P. Pansu, “$L^p$-cohomology and pinching”, Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, 379–389 | MR | Zbl
[4] P. Pansu, “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 129 (1989), 1–60 | DOI | MR | Zbl
[5] E. Heintze, H. Im Hof, “Geometry of horospheres”, J. Diff. Geom., 12 (1977), 481–491 | MR | Zbl
[6] Dzh. Volf, Prostranstva postoyannoi krivizny, M., Nauka, 1982 | MR