Functional characterization of Vasil'ev invariants
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 39-53
Cet article a éte moissonné depuis la source Math-Net.Ru
A family of subsets of a manifold $X$ is called an $r$-cover of $X$ if any $r$ points of $X$ are contained in a set in the family. Let $X$ and $Y$ be two smooth manifolds, $\operatorname{Emb}(X,Y)$ the family of smooth embeddings, $M$ an Abelian group, and $F\colon\operatorname{Emb}(X,Y)\to M$ a functional. We say that $F$ has degree not greater than $r$ if for each finite open $r$-cover $\{U_i\}_{i\in I}$ of $X$ there exist functionals $F_i\colon\operatorname{Emb}(U_i,Y)\to M$, $i\in I$, such that for each $a\in\operatorname{Emb}(X,Y)$ we have $$ F(a)=\sum_{i\in I}F_i(a|_{U_i}). $$ The main result is as follows. Theorem. {\it An isotopy invariant $F\colon\operatorname{Emb}(S^1,\mathbb R^3)\to M$ has finite degree if and only if $F$ is a Vasil'ev invariant. If $F$ is a Vasil'ev invariant of order $r$, then the degree of $F$ is equal to $2r$.} Bibl. – 3 titles.
@article{ZNSL_2008_353_a4,
author = {V. A. Zapol'skii},
title = {Functional characterization of {Vasil'ev} invariants},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--53},
year = {2008},
volume = {353},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a4/}
}
V. A. Zapol'skii. Functional characterization of Vasil'ev invariants. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 39-53. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a4/
[1] M. N. Gusarov (Goussarov), “Interdependent modifications of links and invariants of finite degree”, Topology, 37:3 (1988), 595–602 | DOI | MR
[2] M. Gusarov (Goussarov), M. Polyak, O. Viro, “Finite-type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl
[3] S. S. Podkorytov, “Ob otobrazheniyakh sfery v odnosvyaznoe prostranstvo”, Zapiski nauchn. sem. POMI, 329, 2005, 159–194 ; http://www.pdmi.ras.ru/~ssp | MR | Zbl