Order of a~function on the Bruschlinsky group of a~two-dimensional polyhedron
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 181-190
Voir la notice de l'article provenant de la source Math-Net.Ru
Homotopy classes of mappings of a compact polyhedron $X$ to the circle $T$ form an Abelian group $B(X)$, which is called the Bruschlinsky group and is isomorphic to $H^1(X;\mathbb Z)$. A function $f\colon B(X)\to L$, where $L$ is an Abelian group, has order at most $r$ if for each mapping $a\colon X\to T$ the value $f([a])$ is $\mathbb Z$-linearly expressed via the characteristic function $I_r(a)\colon(X\times T)^r\to\mathbb Z$ of $(\Gamma_a)^r$, where $\Gamma_a\subset X\times T$ is the graph of $a$. The function $f$ has degree at most $r$ if the finite differences of $f$ of order $r+1$ vanish. Conjecturally, the order of $f$ equals the algebraic degree of $f$. The conjecture is proved in the case where $\dim X\le2$. Bibl. – 1 title.
@article{ZNSL_2008_353_a16,
author = {S. S. Podkorytov},
title = {Order of a~function on the {Bruschlinsky} group of a~two-dimensional polyhedron},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {181--190},
publisher = {mathdoc},
volume = {353},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a16/}
}
S. S. Podkorytov. Order of a~function on the Bruschlinsky group of a~two-dimensional polyhedron. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 181-190. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a16/