Characteristics of link primeness in terms of pseudo-characters
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 150-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Pseudo-characters of Artin's braid groups and properties of links represented by braids are studied. The notion of kernel pseudo-character is introduced. It is proved that if a kernel pseudo-character $\phi$ and a braid $\beta$ satisfy $|\phi(\beta)|>C_\phi$, where $C_\phi$ is the defect of $\phi$, then $\beta$ represents a prime (i.e., noncomposite, nonsplit, and nontrivial) link. A method for obtaining nontrivial kernel pseudo-characters from an arbitrary nontrivial braid group pseudo-character is described. Bibl. – 17 titles.
@article{ZNSL_2008_353_a14,
     author = {A. V. Malyutin},
     title = {Characteristics of link primeness in terms of pseudo-characters},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--161},
     year = {2008},
     volume = {353},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Characteristics of link primeness in terms of pseudo-characters
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 150
EP  - 161
VL  - 353
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/
LA  - ru
ID  - ZNSL_2008_353_a14
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Characteristics of link primeness in terms of pseudo-characters
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 150-161
%V 353
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/
%G ru
%F ZNSL_2008_353_a14
A. V. Malyutin. Characteristics of link primeness in terms of pseudo-characters. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 150-161. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/

[1] J. W. Alexander, “A lemma on system of knotted curves”, Proc. Nat. Acad. Sci. USA, 9 (1923), 93–95 | DOI | Zbl

[2] S. Baader, Asymptotic Rasmussen invariant, Preprint, 2007 | MR

[3] M. Bestvina, K. Fujiwara, “Bounded cohomology of subgroups of mapping class groups”, Geometry and Topology, 6 (2002), 69–89 | DOI | MR | Zbl

[4] J. S. Birman, W. W. Menasco, “Studying links via closed braids. IV: Split links and composite links”, Invent. Math., 102 (1990), 115–139 | DOI | MR | Zbl

[5] J. S. Birman, W. W. Menasco, “Erratum: studying links via closed braids. IV”, Invent. Math., 160:2 (2005), 447–452 | DOI | MR | Zbl

[6] J. S. Birman, W. W. Menasco, “Studying links via closed braid. V: Closed braid representations of the unlink”, Trans. Amer. Math. Soc., 329:2 (1992), 585–606 | DOI | MR | Zbl

[7] P. Dehornoy, Braids and Self-Distributivity, Progress in Math., 192, Birkhäuser, 2000 | MR | Zbl

[8] J. Dyer, E. Grossman, “The automorphism groups of the braid groups”, Amer. J. Math., 103:6 (1981), 1151–1169 | DOI | MR | Zbl

[9] I. A. Dynnikov, “Arc-presentations of links. Monotonic simplification”, Fund. Math., 190 (2006), 29–76 | DOI | MR | Zbl

[10] I. V. Erovenko, “On bounded cohomology of amalgamated products of groups”, Int. J. Math. Sci., 2004:40 (2004), 2103–2121 | DOI | MR | Zbl

[11] V. A. Faiziev, “The stability of the equation $f(xy)-f(x)-f(y)=0$”, Acta Math. Univ. Comenianae, 69:1 (2000), 127–135 | MR | Zbl

[12] J. M. Gambaudo, E. Ghys, “Braids and signatures”, Bull. Soc. Math. France, 133:4 (2005), 541–579 | MR

[13] R. I. Grigorchuk, “Some results on bounded cohomology”, Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Math. Soc. Lect. Note Ser., 204, Cambridge Univ. Press, Cambridge, 1995, 111–163 | MR | Zbl

[14] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[15] A. V. Malyutin, “Zakruchennost (zamknutykh) kos”, Algebra i analiz, 16:5 (2004), 59–91 | MR

[16] A. V. Malyutin, N. Yu. Netsvetaev, “Poryadok Deornua na gruppe kos i preobrazovaniya zamknutykh kos”, Algebra i analiz, 15:3 (2003), 170–187 | MR | Zbl

[17] A. A. Markov, Osnovy algebraicheskoi teorii kos, Tr. Matem. in-ta im. V. A. Steklova, 16, Izd-vo Akademii nauk SSSR, L.–M., 1945, 53 pp. | MR | Zbl