Characteristics of link primeness in terms of pseudo-characters
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 150-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Pseudo-characters of Artin's braid groups and properties of links represented by braids are studied. The notion of kernel pseudo-character is introduced. It is proved that if a kernel pseudo-character $\phi$ and a braid $\beta$ satisfy $|\phi(\beta)|>C_\phi$, where $C_\phi$ is the defect of $\phi$, then $\beta$ represents a prime (i.e., noncomposite, nonsplit, and nontrivial) link. A method for obtaining nontrivial kernel pseudo-characters from an arbitrary nontrivial braid group pseudo-character is described. Bibl. – 17 titles.
@article{ZNSL_2008_353_a14,
     author = {A. V. Malyutin},
     title = {Characteristics of link primeness in terms of pseudo-characters},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--161},
     publisher = {mathdoc},
     volume = {353},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Characteristics of link primeness in terms of pseudo-characters
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 150
EP  - 161
VL  - 353
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/
LA  - ru
ID  - ZNSL_2008_353_a14
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Characteristics of link primeness in terms of pseudo-characters
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 150-161
%V 353
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/
%G ru
%F ZNSL_2008_353_a14
A. V. Malyutin. Characteristics of link primeness in terms of pseudo-characters. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 150-161. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a14/