An infinitesimal Rattray theorem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 148-149
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a continuous vector field on the unit Euclidean sphere centered at the origin such that $X(-a)=-X(a)$.
It is proved that there is an orthonormal basis in the space such that for any two vectors $a$ and $b$ in the basis
we have $X(a)\cdot b+a\cdot X(b)=0$. Bibl. – 1 title.
@article{ZNSL_2008_353_a13,
author = {V. V. Makeev},
title = {An infinitesimal {Rattray} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--149},
publisher = {mathdoc},
volume = {353},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a13/}
}
V. V. Makeev. An infinitesimal Rattray theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 148-149. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a13/