An infinitesimal Rattray theorem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 148-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X$ be a continuous vector field on the unit Euclidean sphere centered at the origin such that $X(-a)=-X(a)$. It is proved that there is an orthonormal basis in the space such that for any two vectors $a$ and $b$ in the basis we have $X(a)\cdot b+a\cdot X(b)=0$. Bibl. – 1 title.
@article{ZNSL_2008_353_a13,
     author = {V. V. Makeev},
     title = {An infinitesimal {Rattray} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--149},
     year = {2008},
     volume = {353},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a13/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - An infinitesimal Rattray theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 148
EP  - 149
VL  - 353
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a13/
LA  - ru
ID  - ZNSL_2008_353_a13
ER  - 
%0 Journal Article
%A V. V. Makeev
%T An infinitesimal Rattray theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 148-149
%V 353
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a13/
%G ru
%F ZNSL_2008_353_a13
V. V. Makeev. An infinitesimal Rattray theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 148-149. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a13/

[1] R. Rattray, “An antipodal point, orthogonal point theorem”, Ann. of Math., 60 (1954), 502–512 | DOI | MR | Zbl