Properties of continuous functions on a normed space and its sphere
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 139-147
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Known well is the problem of finding configurations of points of the Euclidean sphere $S^n$ that can be put to one level of any continuous function on $S^n$ by a rotation of $S^n$. The paper is devoted to various ways of transferring this problem to the case of a normed space. Here is one of the results. Let $f$ and $g$ be two even continuous functions on an $n$-dimensional normed space $E$, and let $f(0) for each nonzero $x\in E$. Then $E$ contains $n$ unit vectors $e_1,\dots,e_n$ such that for any $1\le i we have $f(e_i+e_j)=f(e_i-e_j)$ and $g(e_i+e_j)=g(e_i-e_j)$. Bibl. – 16 titles.
@article{ZNSL_2008_353_a12,
     author = {V. V. Makeev},
     title = {Properties of continuous functions on a~normed space and its sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--147},
     year = {2008},
     volume = {353},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a12/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Properties of continuous functions on a normed space and its sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 139
EP  - 147
VL  - 353
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a12/
LA  - ru
ID  - ZNSL_2008_353_a12
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Properties of continuous functions on a normed space and its sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 139-147
%V 353
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a12/
%G ru
%F ZNSL_2008_353_a12
V. V. Makeev. Properties of continuous functions on a normed space and its sphere. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 139-147. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a12/

[1] B. Knaster, “Probléme 4”, Colloq. Math., 1 (1947), 30–31

[2] V. V. Makeev, “Zadacha Knastera o nepreryvnykh otobrazheniyakh sfery v evklidovo prostranstvo”, Zap. nauchn. semin. LOMI, 167, 1988, 169–178 | MR | Zbl

[3] S. A. Kakutani, “A proof that there exists a circumscribing cube around any bounded closed set in $\mathbb R^3$”, Ann. of Math., 43 (1942), 739–741 | DOI | MR | Zbl

[4] D. G. Bourgin, “Deformation and mapping theorems”, Fund. Math., 46 (1959), 285–303 | MR | Zbl

[5] V. V. Makeev, “Zadacha Knastera i pochti sfericheskie secheniya”, Mat. sb., 180:3 (1989), 424–431 | MR | Zbl

[6] E. E. Floyd, “Real valued mappings of spheres”, Proc. Amer. Math. Soc., 6 (1955), 957–959 | DOI | MR | Zbl

[7] F. J. Dyson, “Continuous functions defined on spheres”, Ann. of Math., 54 (1951), 534–536 | DOI | MR | Zbl

[8] G. R. Livesay, “On a theorem of F. J. Dyson”, Ann. of Math. (2), 59 (1954), 227–229 | DOI | MR

[9] V. V. Makeev, “Trekhmernye mnogogranniki, vpisannye i opisannye vokrug vypuklykh kompaktov. II”, Algebra i analiz, 13:5 (2001), 110–133 | MR | Zbl

[10] V. V. Makeev, “O nekotorykh geometricheskikh svoistvakh vypuklykh tel. II”, Algebra i analiz, 15:6 (2003), 74–85 | MR | Zbl

[11] V. V. Makeev, “Geometriya konechnomernykh normirovannykh prostranstv i nepreryvnye funktsii na evklidovoi sfere”, Zap. nauch. semin. POMI, 329, 2005, 107–117 | MR | Zbl

[12] H. Yamabe, Z. Yujobo, “On the continuous functions defined on a sphere”, Osaka Math. J., 2 (1950), 19–22 | MR | Zbl

[13] C. T. Yang, “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobo, and Dyson. I”, Ann. of Math., 60 (1954), 262–282 | DOI | MR | Zbl

[14] C. T. Yang, “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobo, and Dyson. II”, Ann. of Math., 62 (1955), 271–283 | DOI | MR | Zbl

[15] C. T. Yang, “Continuous functions from spheres to Euclidean spaces”, Ann. of Math., 62 (1955), 284–292 | DOI | MR | Zbl

[16] T. Hausel, E. Makai, A. Szűcz, “Inscribing cubes and covering by rhombic dodecahedra via equivariant topology”, Mathematika, 47 (2000):1–2 (2002), 371–397 | MR