@article{ZNSL_2008_353_a1,
author = {Yu. D. Burago and S. G. Malev and D. I. Novikov},
title = {A direct proof of {Gromov's} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--26},
year = {2008},
volume = {353},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a1/}
}
Yu. D. Burago; S. G. Malev; D. I. Novikov. A direct proof of Gromov's theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 14-26. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a1/
[1] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, A course in metric geometry, Graduate Studies in Math., 33, Amer. Math. Soc., Providence, RI, 2001, 415 pp. | MR | Zbl
[2] Yu. D. Burago, V. A. Zalgaller, Introduction to Riemannian geometry, Nauka, Moscow, 1994, 319 pp. (Russian) | MR | Zbl
[3] I. Chavel, Riemannian geometry – a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, Cambridge, 1993, 386 pp. | MR | Zbl
[4] M. Gromov, Metric structures for Riemannian and Non-Riemannian spaces, Birkhäuser, 1999 | MR | Zbl
[5] Ju. Jost, Riemannian geometry and geometric analysis, Third edition, Universitext, Springer-Verlag, Berlin, 2002, 532 pp. | MR
[6] H. Karcher, “Riemannian center of mass and mollifier smoothing”, Comm. Pure Appl. Math., 30:5 (1977), 509–541 | DOI | MR | Zbl