A direct proof of Gromov's theorem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 14-26
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new  proof of a theorem by Gromov is given: for any $C>0$ and integer $n>1$, there exists a function
$\Delta_{C,n}(\delta)$ such that if the Gromov–Hausdorff distance between two complete Riemannian $n$-manifolds $V$ and $W$ is at most $\delta$, their sectional curvatures $|K_\sigma|$ do not exceed $C$, and their injectivity radii are at least $1/C$, then the Lipschitz distance between $V$ and $W$ is less than
$\Delta_{C,n}(\delta)$, and $\Delta_{C,n}(\delta)\to0$ as $\delta\to0$. Bibl. – 6 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_353_a1,
     author = {Yu. D. Burago and S. G. Malev and D. I. Novikov},
     title = {A direct proof of {Gromov's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {353},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a1/}
}
                      
                      
                    Yu. D. Burago; S. G. Malev; D. I. Novikov. A direct proof of Gromov's theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 14-26. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a1/