A lower bound for the distortion of a~knotted curve
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 5-13
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the distortion of any knotted curve in $\mathbb R^3$ is greater than 4.76. This improves the result by John M. Sullivan and Elizabeth Denne. Bibl. – 3 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_353_a0,
     author = {T. Bereznyak and P. V. Svetlov},
     title = {A lower bound for the distortion of a~knotted curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {353},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a0/}
}
                      
                      
                    T. Bereznyak; P. V. Svetlov. A lower bound for the distortion of a~knotted curve. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 5-13. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a0/