Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 114-119
Cet article a éte moissonné depuis la source Math-Net.Ru
Tychonoff–Schauder fixed-point theorem is applied to prove the existence of bounded solutions of systems of ordinary differential equations which are $C^0$-close to linear hyperbolic systems. Bibl. – 3 titles.
@article{ZNSL_2008_352_a3,
author = {O. A. Ivanov},
title = {Tychonoff{\textendash}Schauder {Theorem} and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--119},
year = {2008},
volume = {352},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/}
}
TY - JOUR AU - O. A. Ivanov TI - Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 114 EP - 119 VL - 352 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/ LA - ru ID - ZNSL_2008_352_a3 ER -
%0 Journal Article %A O. A. Ivanov %T Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations %J Zapiski Nauchnykh Seminarov POMI %D 2008 %P 114-119 %V 352 %U http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/ %G ru %F ZNSL_2008_352_a3
O. A. Ivanov. Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 114-119. http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/
[1] O. A. Ivanov, “Ogranichennye resheniya kvazilineinykh sistem”, Vestnik LGU, 1985, no. 4, 99–100 | MR
[2] V. A. Pliss, Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977, 304 pp. | MR | Zbl
[3] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl