Tychonoff--Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 114-119
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Tychonoff–Schauder fixed-point theorem is applied to prove the existence of bounded solutions of systems of ordinary differential equations which are $C^0$-close to linear hyperbolic systems. Bibl. – 3 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_352_a3,
     author = {O. A. Ivanov},
     title = {Tychonoff--Schauder {Theorem} and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--119},
     publisher = {mathdoc},
     volume = {352},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/}
}
                      
                      
                    TY - JOUR AU - O. A. Ivanov TI - Tychonoff--Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 114 EP - 119 VL - 352 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/ LA - ru ID - ZNSL_2008_352_a3 ER -
%0 Journal Article %A O. A. Ivanov %T Tychonoff--Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations %J Zapiski Nauchnykh Seminarov POMI %D 2008 %P 114-119 %V 352 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/ %G ru %F ZNSL_2008_352_a3
O. A. Ivanov. Tychonoff--Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 114-119. http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/