Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 114-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Tychonoff–Schauder fixed-point theorem is applied to prove the existence of bounded solutions of systems of ordinary differential equations which are $C^0$-close to linear hyperbolic systems. Bibl. – 3 titles.
@article{ZNSL_2008_352_a3,
     author = {O. A. Ivanov},
     title = {Tychonoff{\textendash}Schauder {Theorem} and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--119},
     year = {2008},
     volume = {352},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/}
}
TY  - JOUR
AU  - O. A. Ivanov
TI  - Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 114
EP  - 119
VL  - 352
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/
LA  - ru
ID  - ZNSL_2008_352_a3
ER  - 
%0 Journal Article
%A O. A. Ivanov
%T Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 114-119
%V 352
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/
%G ru
%F ZNSL_2008_352_a3
O. A. Ivanov. Tychonoff–Schauder Theorem and the existence of bounded solutions of quasi-linear hyperbolic systems of differential equations. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 114-119. http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a3/

[1] O. A. Ivanov, “Ogranichennye resheniya kvazilineinykh sistem”, Vestnik LGU, 1985, no. 4, 99–100 | MR

[2] V. A. Pliss, Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977, 304 pp. | MR | Zbl

[3] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl