Integrals along trajectories of a dynamic system and the existence of homogeneous Lyapunoff–Krasovskij functions
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 106-113
Cet article a éte moissonné depuis la source Math-Net.Ru
Linear equations with respect to a dynamic system on a metric space are considered. A new proof of the existence of homogeneous Lyapunoff–Krasovskij functions for a homogeneous system in the Euclid space is given. Bibl. – 3 titles.
@article{ZNSL_2008_352_a2,
author = {O. A. Ivanov},
title = {Integrals along trajectories of a~dynamic system and the existence of homogeneous {Lyapunoff{\textendash}Krasovskij} functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {106--113},
year = {2008},
volume = {352},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a2/}
}
TY - JOUR AU - O. A. Ivanov TI - Integrals along trajectories of a dynamic system and the existence of homogeneous Lyapunoff–Krasovskij functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2008 SP - 106 EP - 113 VL - 352 UR - http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a2/ LA - ru ID - ZNSL_2008_352_a2 ER -
O. A. Ivanov. Integrals along trajectories of a dynamic system and the existence of homogeneous Lyapunoff–Krasovskij functions. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part 12, Tome 352 (2008), pp. 106-113. http://geodesic.mathdoc.fr/item/ZNSL_2008_352_a2/
[1] O. A. Ivanov, “Lineinye uravneniya “v silu” dinamicheskoi sistemy. Sovremennye metody v teorii kraevykh zadach”, Pontryaginskie chteniya XII, Tezisy dokladov, VGU, Voronezh, 2001, 79–80
[2] A. Ya. Kanevskii, L. E. Reizin, “Postroenie odnorodnykh funktsii Lyapunova–Krasovskogo”, Diff. uravn., 1973, no. 2, 251–259 | MR | Zbl
[3] N. N. Ladis, “Energeticheskie funktsii dlya nekotorykh dinamicheskikh sistem”, Diff. uravn., 1972, no. 5, 790–795 | MR