On  estimation and detection of a function from tensor product spaces
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 180-218
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We observe an unknown $d$-variables function $f(t)$, $ t\in[0,1]^d$ in the white Gaussian noise of a level $\varepsilon>0$. We suppose that $f\in\mathcal{F}$, where $\mathcal{F}$ is a ball in Hilbert space $\mathcal{L}^d\subset L_2([0,1]^d)$ of tensor product structure. Under minimax setup, we consider two problems: to estimate $f$ (for quadratic losses) and to detect $f$, i.e., to test the null hypothesis $H_0:f=0$ against alternatives $H_1: f\in\mathcal{F}_d$, $\|f\|_2\ge r_\varepsilon$. We are interesting in the case $d=d_\varepsilon\to\infty$. We study sharp, rate and log-asymptotics (as $\varepsilon\to 0$, $d\to\infty$) in the problems. In particular, we show that log-asymptotics are different essentially for $d\ll\log\varepsilon^{-1}$ and for $d\gg\log\varepsilon^{-1}$.
			
            
            
            
          
        
      @article{ZNSL_2007_351_a9,
     author = {Yu. I. Ingster and I. A. Suslina},
     title = {On  estimation and detection of a function from tensor product spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--218},
     publisher = {mathdoc},
     volume = {351},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a9/}
}
                      
                      
                    TY - JOUR AU - Yu. I. Ingster AU - I. A. Suslina TI - On estimation and detection of a function from tensor product spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 180 EP - 218 VL - 351 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a9/ LA - ru ID - ZNSL_2007_351_a9 ER -
Yu. I. Ingster; I. A. Suslina. On estimation and detection of a function from tensor product spaces. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 180-218. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a9/