Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 141-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this paper is to derive new optimal bounds for the rate of strong Gaussian approximation of sums of i.i.d. $\mathbb R^d$-valued random variables $\xi_j$ having finite moments of the form $\mathbb{E}\,H(\|\xi_j\|)$, where $H(x)$ is a monotone function growing not slower than $x^2$ and not faster than $e^{cx}$. We obtain some generalization and improvements of the results of U. Einmahl (1989).
@article{ZNSL_2007_351_a7,
     author = {A. Yu. Zaitsev},
     title = {Estimates for the rate of strong {Gaussian} approximation for the sums of i.i.d. multidimensional random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--157},
     year = {2007},
     volume = {351},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 141
EP  - 157
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/
LA  - ru
ID  - ZNSL_2007_351_a7
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 141-157
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/
%G ru
%F ZNSL_2007_351_a7
A. Yu. Zaitsev. Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 141-157. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/

[1] I. Berkes, W. Philipp, “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 7 (1979), 29–54 | DOI | MR | Zbl

[2] E. Berger, Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvectoren, Dissertation, Universität Göttingen, 1982

[3] A. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 18 (1973), 217–234 | MR | Zbl

[4] A. A. Borovkov and A. I. Sakhanenko, “On the rate of convergence in invariance principle”, Lect. Notes Math., 1021, 1981, 59–66 | MR

[5] A. A. Borovkov, A. I. Sakhanenko, “Otsenki skorosti skhodimosti v printsipe invariantnosti dlya banakhovykh prostranstv”, Teoriya veroyatn. i ee primen., 25:4 (1980), 734–744 | MR | Zbl

[6] M. Csörgő, P. Révész, “A new method to prove Strassen type laws of invariance principle. I; II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31 (1975), 255–259 ; 261–269 | DOI | MR | Zbl | Zbl

[7] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981 | MR | Zbl

[8] S. Csörgő, P. Hall, “The Komlós–Major–Tusnády approximations and their applications”, Austral. J. Statist., 26:2 (1984), 189–218 | DOI | MR | Zbl

[9] U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Theor. Rel. Fields, 76:1 (1987), 81–101 | DOI | MR | Zbl

[10] U. Einmahl, “Strong invariance principles for partial sums of independent random vectors”, Ann. Probab., 15 (1987), 1419–1440 | DOI | MR | Zbl

[11] U. Einmahl, “Extensions of results of Komlós, Major and Tusnády to the multivariate case”, J. Multivar. Anal., 28 (1989), 20–68 | DOI | MR | Zbl

[12] F. Götze and A. Yu. Zaitsev, Bounds for the rate of strong approximation in the multidimensional invariance principle, Preprint SFB 701 no. 07-057, Bielefeld University, Bielefeld, 2007 | MR

[13] V. V. Gorodetskii, “O skorosti skhodimosti v mnogomernom printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 20 (1975), 642–649 | Zbl

[14] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF. I; II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 ; 34 (1976), 34–58 | DOI | MR | Zbl | DOI | MR | Zbl

[15] P. Major, “On the invariance principle for sums of independent identically distributed random variables”, J. Multivar. Anal., 8 (1978), 487–517 | DOI | MR | Zbl

[16] W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Lect. Notes in Math., 709, 1979, 171–193 | MR | Zbl

[17] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl

[18] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Trudy inst. matem. SO AN SSSR, 3, Nauka, Novosibirsk, 1984, 4–49 | MR

[19] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR

[20] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability, II (Seattle, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 223–245 | MR | Zbl

[21] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti v terminakh srezannykh stepennykh momentov”, Sibirskii matem. zhurn., 47:6 (2006), 1355–1371 | MR | Zbl

[22] Qi-Man Shao, “Strong approximation theorems for independent random variables and their applications”, J. Multivar. Anal., 52:1 (1995), 107–130 | DOI | MR | Zbl

[23] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievsk. un-ta, Kiev, 1961

[24] A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v mnogomernoi tsentralnoi predelnoi teoreme dlya sluchainykh velichin s konechnymi eksponentsialnymi momentami”, Teoriya veroyatn. i ee primen., 31 (1986), 246–265 | MR

[25] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 | DOI | MR | Zbl

[26] A. Yu. Zaitsev, “Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III”, Teoriya veroyatn. i ee primen., 45 (2000), 718–738 ; 46 (2001), 535–561 ; 744–769 | MR | Zbl | MR | Zbl

[27] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem”, Proceedings of the International Congress of Mathematicians, Vol. III. Invited Lectures (Bejing 2002), 2002, 107–116 | MR | Zbl

[28] A. Yu. Zaitsev, “Otsenki tochnosti silnoi approksimatsii v mnogomernom printsipe invariantnosti”, Zap. nauchn. semin. POMI, 339, 2006, 37–53 | MR | Zbl