Estimates for the rate of strong Gaussian approximation for the sums of i.i.d.\ multidimensional random vectors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 141-157

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to derive new optimal bounds for the rate of strong Gaussian approximation of sums of i.i.d. $\mathbb R^d$-valued random variables $\xi_j$ having finite moments of the form $\mathbb{E}\,H(\|\xi_j\|)$, where $H(x)$ is a monotone function growing not slower than $x^2$ and not faster than $e^{cx}$. We obtain some generalization and improvements of the results of U. Einmahl (1989).
@article{ZNSL_2007_351_a7,
     author = {A. Yu. Zaitsev},
     title = {Estimates for the rate of strong {Gaussian} approximation for the sums of i.i.d.\ multidimensional random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--157},
     publisher = {mathdoc},
     volume = {351},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Estimates for the rate of strong Gaussian approximation for the sums of i.i.d.\ multidimensional random vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 141
EP  - 157
VL  - 351
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/
LA  - ru
ID  - ZNSL_2007_351_a7
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Estimates for the rate of strong Gaussian approximation for the sums of i.i.d.\ multidimensional random vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 141-157
%V 351
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/
%G ru
%F ZNSL_2007_351_a7
A. Yu. Zaitsev. Estimates for the rate of strong Gaussian approximation for the sums of i.i.d.\ multidimensional random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 141-157. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/