@article{ZNSL_2007_351_a7,
author = {A. Yu. Zaitsev},
title = {Estimates for the rate of strong {Gaussian} approximation for the sums of i.i.d. multidimensional random vectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--157},
year = {2007},
volume = {351},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/}
}
TY - JOUR AU - A. Yu. Zaitsev TI - Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 141 EP - 157 VL - 351 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/ LA - ru ID - ZNSL_2007_351_a7 ER -
A. Yu. Zaitsev. Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 141-157. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a7/
[1] I. Berkes, W. Philipp, “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 7 (1979), 29–54 | DOI | MR | Zbl
[2] E. Berger, Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvectoren, Dissertation, Universität Göttingen, 1982
[3] A. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 18 (1973), 217–234 | MR | Zbl
[4] A. A. Borovkov and A. I. Sakhanenko, “On the rate of convergence in invariance principle”, Lect. Notes Math., 1021, 1981, 59–66 | MR
[5] A. A. Borovkov, A. I. Sakhanenko, “Otsenki skorosti skhodimosti v printsipe invariantnosti dlya banakhovykh prostranstv”, Teoriya veroyatn. i ee primen., 25:4 (1980), 734–744 | MR | Zbl
[6] M. Csörgő, P. Révész, “A new method to prove Strassen type laws of invariance principle. I; II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31 (1975), 255–259 ; 261–269 | DOI | MR | Zbl | Zbl
[7] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981 | MR | Zbl
[8] S. Csörgő, P. Hall, “The Komlós–Major–Tusnády approximations and their applications”, Austral. J. Statist., 26:2 (1984), 189–218 | DOI | MR | Zbl
[9] U. Einmahl, “A useful estimate in the multidimensional invariance principle”, Probab. Theor. Rel. Fields, 76:1 (1987), 81–101 | DOI | MR | Zbl
[10] U. Einmahl, “Strong invariance principles for partial sums of independent random vectors”, Ann. Probab., 15 (1987), 1419–1440 | DOI | MR | Zbl
[11] U. Einmahl, “Extensions of results of Komlós, Major and Tusnády to the multivariate case”, J. Multivar. Anal., 28 (1989), 20–68 | DOI | MR | Zbl
[12] F. Götze and A. Yu. Zaitsev, Bounds for the rate of strong approximation in the multidimensional invariance principle, Preprint SFB 701 no. 07-057, Bielefeld University, Bielefeld, 2007 | MR
[13] V. V. Gorodetskii, “O skorosti skhodimosti v mnogomernom printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 20 (1975), 642–649 | Zbl
[14] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF. I; II”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 ; 34 (1976), 34–58 | DOI | MR | Zbl | DOI | MR | Zbl
[15] P. Major, “On the invariance principle for sums of independent identically distributed random variables”, J. Multivar. Anal., 8 (1978), 487–517 | DOI | MR | Zbl
[16] W. Philipp, “Almost sure invariance principles for sums of $B$-valued random variables”, Lect. Notes in Math., 709, 1979, 171–193 | MR | Zbl
[17] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl
[18] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Trudy inst. matem. SO AN SSSR, 3, Nauka, Novosibirsk, 1984, 4–49 | MR
[19] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR
[20] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability, II (Seattle, 1999), Progr. Probab., 47, Birkhäuser Boston, Boston, 2000, 223–245 | MR | Zbl
[21] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti v terminakh srezannykh stepennykh momentov”, Sibirskii matem. zhurn., 47:6 (2006), 1355–1371 | MR | Zbl
[22] Qi-Man Shao, “Strong approximation theorems for independent random variables and their applications”, J. Multivar. Anal., 52:1 (1995), 107–130 | DOI | MR | Zbl
[23] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievsk. un-ta, Kiev, 1961
[24] A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v mnogomernoi tsentralnoi predelnoi teoreme dlya sluchainykh velichin s konechnymi eksponentsialnymi momentami”, Teoriya veroyatn. i ee primen., 31 (1986), 246–265 | MR
[25] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 | DOI | MR | Zbl
[26] A. Yu. Zaitsev, “Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III”, Teoriya veroyatn. i ee primen., 45 (2000), 718–738 ; 46 (2001), 535–561 ; 744–769 | MR | Zbl | MR | Zbl
[27] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem”, Proceedings of the International Congress of Mathematicians, Vol. III. Invited Lectures (Bejing 2002), 2002, 107–116 | MR | Zbl
[28] A. Yu. Zaitsev, “Otsenki tochnosti silnoi approksimatsii v mnogomernom printsipe invariantnosti”, Zap. nauchn. semin. POMI, 339, 2006, 37–53 | MR | Zbl