On semiparametric inference in moderate deviation zone
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 129-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In [11], we show that Hajek–Le Cam lower bound for asymptotic efficiency in estimation and lower bound for Pitman efficiency in hypothesis testing can be extended on moderate deviation zone if weak additional assumptions hold. In this paper, we present a version of these results in the semiparametric form.
@article{ZNSL_2007_351_a6,
     author = {M. S. Ermakov},
     title = {On semiparametric inference in moderate deviation zone},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--140},
     year = {2007},
     volume = {351},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a6/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - On semiparametric inference in moderate deviation zone
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 129
EP  - 140
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a6/
LA  - ru
ID  - ZNSL_2007_351_a6
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T On semiparametric inference in moderate deviation zone
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 129-140
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a6/
%G ru
%F ZNSL_2007_351_a6
M. S. Ermakov. On semiparametric inference in moderate deviation zone. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 129-140. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a6/

[1] R. R. Bahadur, “Asymptotic efficiency of tests and estimates”, Sankhya, 22 (1960), 229–252 | MR | Zbl

[2] P. Bickel, C. Klaassen, Y. Ritov, J. A Wellner, Efficient and adaptive estimation for the semiparametric models, John Hopkins University Press, Baltimore, 1993 | MR | Zbl

[3] P. J. Bickel, J Kwon J., “Inference for semiparametric models: some questions and an answer”, Statistica Sinica, 11 (1993), 863–960 | MR

[4] A. A. Borovkov, A. A. Mogulskii, Bolshie ukloneniya i proverka statisticheskikh gipotez, Trudy Instituta Matematiki Rossiiskoi Akad. Nauk, Sibirskoe Otdelenie, Nauka, Novosibirsk, 1992 | MR

[5] A. A. Borovkov, A. A. Mogulskii, “Bolshie ukloneniya i statisticheskii printsip invariantnosti”, Teoriya veroyatn. i ee primen., 37 (1992), 11–18 | MR | Zbl

[6] H. Chernooff, “A measure of asymptotic efficiency for tests of a hypothesis based on sums of observations”, Ann. Math. Statist., 23 (1952), 493–507 | DOI | MR

[7] D. L. Donoho, R. C. Liu, Geometrizing rates of convergence. I, Technical Report. 137, Dept. Statistics, Univ. California, Berkeley, 1987

[8] M. S. Ermakov, “Asymptotic minimaxity of usual goodness of fit tests”, Probability Theory and Mathematical Statistics, Proc. of the 5th Vilnius Conf., 1, ed. Grigelionis et al., VSP/Mokslas, Vilnius, 1991, 323–331 | MR

[9] M. S. Ermakov, “On asymptotic minimaxity of rank tests”, Statist. Probab. Lett., 15 (1992), 191–196 | DOI | MR | Zbl

[10] M. S. Ermakov, “Bolshie ukloneniya empiricheskikh mer i proverka gipotez”, Zap. nauchn. semin. LOMI, 207, 1993, 37–60

[11] M. S. Ermakov, “Asimptoticheski effektivnye statisticheskie vyvody dlya veroyatnostei umerennykh uklonenii”, Teoriya veroyatnostei i ee primeneniya, 48 (2003), 676–700 | MR | Zbl

[12] M. S. Ermakov, “Importance sampling for simulation of moderate deviations of statistics”, Statistics and Decision, 2008 (to appear) | Zbl

[13] J. Hajek, “Local asymptotic minimax and admisibility in estimation”, Proc. Sixth Berkeley Symp. on Math. Statist. and Probab., 1, California Univ. Press, Los Angelos, 1972, 175–194 | MR | Zbl

[14] J. L. Hodges, E. L. Lehmann, “On some nonparametric competitors of the $t$-test”, Ann. Math. Statist., 27 (1956), 324–335 | DOI | MR | Zbl

[15] I. A. Ibragimov, R. Z. Khasminskii, “Asymptotically normal families of distributions and efficient estimation”, Ann. Statist., 19 (1991), 1681–1721 | DOI | MR

[16] W. C. M. Kallenberg, “Intermediate efficiency, theory and examples”, Ann. Statist., 11 (1983), 170–182 | DOI | MR | Zbl

[17] Yu. A. Koshevnik, B. Ya. Levit, “O neparametricheskom analoge informatsionnoi matritsy”, Teoriya veroyatnostei i primeneniya, 21:4 (1976), 759–774 | MR | Zbl

[18] S. Kourauklis, “On the relation between Hodges–Lehman efficiency and Pitman efficiency”, Canad. J. Statist., 17 (1989), 311–318 | DOI | MR

[19] S. Kourauklis, “A relation between the Chernoff index and the Pitman efficiency”, Statist. Probab. Lett., 9 (1990), 391–395 | DOI | MR

[20] L. Le Cam, Asymptotic methods in statistical decision theory, Springer-Verlag, NY, 1986 | MR

[21] B. Ya. Levit, “On optimality of some statistical estimates”, Proc. Prague Sympos. on Asymptotic Statist., 2, Prague, 1974, 215–238 | MR

[22] M. Radavichius, “From asymptotic efficiency in minimax sense to Bahadur efficiency”, New Trends in Probab. and Statist., 1, eds. V. Sazonov and T. Shervashidze, VSP/Mokslas, Vilnius, 1991, 629–635 | MR

[23] Ch. Stein, “Efficient nonparametric testing and estimation”, Third Berkeley Symp. Math. Statist. and Probab., 1, Univ. California Press, Berkeley, 1956, 187–195 | MR

[24] A. W. van der Vaart, “On differentiable functionals”, Ann. Statist., 19 (1991), 178–204 | DOI | MR | Zbl

[25] A. W. van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998 | MR

[26] H. S. Wieand, “A condition under which the Pitman and Bahadur approaches to efficiency coincide”, Ann. Statist., 4 (1976), 1003–1011 | DOI | MR | Zbl