Sharp dilation-type inequalities with fixed parameter of convexity
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 54-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Sharp upper bounds for large and small deviations and dilation-type inequalities are considered for probability distributions satisfying convexity conditions of the Brunn–Minkowski kind.
@article{ZNSL_2007_351_a2,
     author = {S. G. Bobkov and F. L. Nazarov},
     title = {Sharp dilation-type inequalities with fixed parameter of convexity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--78},
     year = {2007},
     volume = {351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a2/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - F. L. Nazarov
TI  - Sharp dilation-type inequalities with fixed parameter of convexity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 54
EP  - 78
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a2/
LA  - en
ID  - ZNSL_2007_351_a2
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A F. L. Nazarov
%T Sharp dilation-type inequalities with fixed parameter of convexity
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 54-78
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a2/
%G en
%F ZNSL_2007_351_a2
S. G. Bobkov; F. L. Nazarov. Sharp dilation-type inequalities with fixed parameter of convexity. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 54-78. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a2/

[1] S. G. Bobkov, “Large deviations via transference plans”, Adv. Math. Res., 2, Nova Sci. Publ., Hauppauge, NY, 2003, 151–175 | MR | Zbl

[2] S. G. Bobkov, “Large deviations and isoperimetry over convex probability measures with heavy tails”, Electr. J. Probab., 12 (2007), 1072–1100 | MR | Zbl

[3] C. Borell, “Convex measures on locally convex spaces”, Ark. Math., 12 (1974), 239–252 | DOI | MR | Zbl

[4] C. Borell, “Convex set functions in $d$-space”, Period. Math. Hungar., 6:2 (1975), 111–136 | DOI | MR

[5] J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Israel Seminar (GAFA) 1989–90, Lecture Notes in Math., 1469, 1991, 127–137 | MR | Zbl

[6] H. J. Brascamp, E. H. Lieb, “On extensions of the Brunn–Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl

[7] M. Fradelizi, O. Guédon, “The extreme points of subsets of $s$-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335 | MR | Zbl

[8] M. Fradelizi, O. Guédon, “A generalized localization theorem and geometric inequalities for convex bodies”, Adv. Math., 204:2 (2006), 509–529 | DOI | MR | Zbl

[9] M. L. Gromov, V. D. Milman, “Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces”, Compositio Math., 62:3 (1987), 263–282 | MR | Zbl

[10] O. Guédon, “Kahane-Khinchine type inequalities for negative exponents”, Mathematika, 46 (1999), 165–173 | DOI | MR | Zbl

[11] R. Kannan, L. Lovász, and M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete and Comput. Geom., 13 (1995), 541–559 | DOI | MR | Zbl

[12] H. Knothe, “Contributions to the theory of convex bodies”, Michigan Math. J., 4 (1957), 39–52 | DOI | MR | Zbl

[13] R. Latala, “On the equivalence between geometric and arithmetic means for logconcave measures”, Convex geometric analysis, Berkeley, CA, 1996, 123–127 | MR

[14] L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Structures and Algorithms, 4:3 (1993), 359–412 | DOI | MR | Zbl

[15] St. Petersburg Math. J., 14:2 (2003), 351–366 | MR | Zbl

[16] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Archive for Rat. Mech. Analysis, 5 (1960), 286–292 | DOI | MR | Zbl

[17] A. Prékopa, “Logarithmic concave measures with applications to stochastic programming”, Acta Sci. Math. Szeged, 32 (1971), 301–316 | MR | Zbl