Limit theorems for
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 259-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive universal strong limit theorems for increments of compound renewal processes which unifies the strong law of large numbers, the Erdős–Rényi law, the Csörgő-Révész law and the law of the iterated logarithm for such processes. New results are obtained under various moment assumptions on distributions of random variables generating the process. In particular, it is investigated the case of distributions from domains of attraction of a normal law and completely asymmetric stable laws with index $\alpha\in(1,2)$.
@article{ZNSL_2007_351_a15,
     author = {A. N. Frolov},
     title = {Limit theorems for},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--283},
     year = {2007},
     volume = {351},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a15/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - Limit theorems for
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 259
EP  - 283
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a15/
LA  - ru
ID  - ZNSL_2007_351_a15
ER  - 
%0 Journal Article
%A A. N. Frolov
%T Limit theorems for
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 259-283
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a15/
%G ru
%F ZNSL_2007_351_a15
A. N. Frolov. Limit theorems for. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 259-283. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a15/

[1] P. Erdős, A. Rényi, “On a new law of large numbers”, J. Analyse Math., 23 (1970), 103–111 | DOI | MR | Zbl

[2] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Akadémiai Kiadó, Budapest, 1981 | MR | Zbl

[3] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, Doklady Akademii Nauk, 372:5 (2000), 596–599 | MR | Zbl

[4] A. N. Frolov, “On one-sided strong laws for increments of sums of i.i.d. random variables”, Studia Sci. Math. Hungar., 39 (2002), 333–359 | MR | Zbl

[5] A. N. Frolov, “Predelnye teoremy dlya priraschenii summ nezavisimykh sluchainykh velichin”, Teor. veroyatn. i ee primen., 48:1 (2003), 104–121 | MR | Zbl

[6] A. N. Frolov, “Converses to the Csörgő–Révész laws”, Statist. and Probab. Letters, 72 (2005), 113–123 | DOI | MR | Zbl

[7] A. N. Frolov, “Silnye predelnye teoremy dlya priraschenii protsessov vosstanovleniya”, Zap. nauchn. semin. POMI, 298, 2003, 208–225 | Zbl

[8] A. N. Frolov, “Ob asimptoticheskom povedenii priraschenii sluchainykh polei”, Zap. nauchn. semin. POMI, 298, 2003, 191–207 | MR | Zbl

[9] A. N. Frolov, “Universalnye predelnye teoremy dlya priraschenii protsessov s nezavisimymi prirascheniyami”, Teoriya veroyatnostei i ee primeneniya, 49:3 (2004), 601–609 | Zbl

[10] A. N. Frolov, “Silnye predelnye teoremy dlya priraschenii summ nezavisimykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 311, 2004, 260–285 | Zbl

[11] A. N. Frolov, “O zakone povtornogo logarifma dlya priraschenii summ nezavisimykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 320, 2004, 174–186 | MR | Zbl

[12] P. Embrekhts, K. Klyuppelberg, “Nekotorye aspekty strakhovoi matematiki”, Teoriya veroyatn. i ee primen., 38 (1993), 374–416 | MR | Zbl

[13] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[14] A. N. Frolov, Predelnye teoremy dlya priraschenii summ nezavisimykh sluchainykh velichin i sluchainykh protsessov, Diss. na soisk. uch. st. doktora fiz.-mat. nauk, Sankt-Peterburgskii gosudarstvennyi universitet, 2004

[15] Ya. Galambosh, Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984 | MR | Zbl