The nonsingular transformations of the tempering stable Lévy processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 38-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\xi(t)$, $t\in[0,1]$ be a tempering stable process. By $\mathcal P_\xi$ we denote the law of $\xi$ in the Skorokhod space $\mathbb D[0,1]$. For the measure $\mathcal P_\xi$ we construct the group of nonsingular transformations of $\mathbb D [0,1]$.
@article{ZNSL_2007_351_a1,
     author = {D. A. Anikeeva},
     title = {The nonsingular transformations of the tempering stable {L\'evy} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--53},
     year = {2007},
     volume = {351},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a1/}
}
TY  - JOUR
AU  - D. A. Anikeeva
TI  - The nonsingular transformations of the tempering stable Lévy processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 38
EP  - 53
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a1/
LA  - ru
ID  - ZNSL_2007_351_a1
ER  - 
%0 Journal Article
%A D. A. Anikeeva
%T The nonsingular transformations of the tempering stable Lévy processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 38-53
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a1/
%G ru
%F ZNSL_2007_351_a1
D. A. Anikeeva. The nonsingular transformations of the tempering stable Lévy processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 38-53. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a1/

[1] Y. Takahashi, “Absolute continuity of Poisson random fields”, Publ. Res. Inst. Math. Sci., 26 (1990), 629–649 | DOI | MR

[2] J. Kerstan, K. Mattes, and J. Mecke, Infinite divisible point processes, Akademie-Verlag, Berlin, 1978

[3] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner, Leipzig, 1983 | MR | Zbl

[4] A. V. Skorokhod, “O differentsiruemosti mer, sootvetstvuyuschikh sluchainym protsessam I”, Teoriya Veroyatn. i ee primen., II (1957), 629–649

[5] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, 1961

[6] A. V. Skorokhod, Stokhasticheskie protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986

[7] N. V. Smorodina, “Invariantnye i kvaziinvariantnye preobrazovaniya mer, otvechayuschikh ustoichivym protsessam s nezavisimymi prirascheniyami”, Zap. nauchn. semin. POMI, 339, 2006, 135–150 | MR | Zbl

[8] J. F. C. Kingman, Poisson Processes, Oxford, 1993 | MR | Zbl

[9] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[10] J. Rosiński, Tempering stable processes, Preprint, August 2004 | MR | Zbl