Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 5-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider stochastic differential equations in the space $Q_p$ of $p-$adic numbers which associated with nonlinear pseudo-differential equations and systems of such equations. To this end we construct both scalar and matrix valued multiplicative functionals of $Q_p$-valued Markov processes and derive the probabilistic representations of the Cauchy problem solutions for nonlinear pseudo-differential equations and systems which extend the Feynman–Kac formula.
@article{ZNSL_2007_351_a0,
     author = {S. A. Albeverio and Ya. I. Belopol'skaya},
     title = {Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--37},
     year = {2007},
     volume = {351},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - Ya. I. Belopol'skaya
TI  - Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 37
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a0/
LA  - ru
ID  - ZNSL_2007_351_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A Ya. I. Belopol'skaya
%T Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-37
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a0/
%G ru
%F ZNSL_2007_351_a0
S. A. Albeverio; Ya. I. Belopol'skaya. Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 5-37. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a0/

[1] S. Albeverio, W. Karwowski, “A random walk on $p$-adic numbers”, Stoch. Proc. Appl., 53 (1994), 1–22 | DOI | MR | Zbl

[2] K. Yasuda, “Additive processes on local fields”, J. Math. Sci. Univ Tokyo, 3 (1996), 629–654 | MR | Zbl

[3] A. Kochubei, Pseudo-differential equations and stochastics over non-archimedian fields, Marcel Dekker Inc. | MR

[4] S. Evans, T. Lidman, “Expectation, Conditional Expectation and Martingales in Local Fields”, Electronic Journal of Probability, 12 (2007), Paper 17 | MR

[5] R.W.R. Darling, “Convergence of martingales on a Riemannian manifold”, Publ. R. I. M. S., Kyoto University, 19 (1983), 753–763 | DOI | MR | Zbl

[6] A. Kh. Bikulov, I. V. Volovich, “$p$-adicheskoe brounovskoe dvizhenie”, Izv. RAN. Ser. matem., 61:3 (1997), 75–90 | MR

[7] K. Kamizono, p-adic Brownian Motion over $Q_p$, Prezentatsiya dokladov mezhdunarodnoi konferentsii “p-adicmathphys2007”

[8] Ya. Belopolskaya, “On stochastic equations with unbounded coefficients for jump processes”, Lecture Notes in Control and information Theory, 25 (1980), 243–254 | MR

[9] Ya. Belopolskaya, “Systems of quasilinear integro-differential equations and Markov processes associated with them”, Probabilistic distributions in infinite dimensional spaces, Nauk. Dumka, 1978, 5–21 | MR

[10] M. Freidlin, Functional integration and partial differential equations, Princeton Univ. Press, 1985 | MR | Zbl

[11] Ya. Belopolskaya, Yu. Daletskii, “Issledovanie zadachi Koshi dlya sistem kvazilineinykh uravnenii s pomoschyu markovskikh protsessov”, Izv. VUZ Matematika, 1978, no. 12, 6–17

[12] Ya. I. Belopolskaya, Yu. L. Dalecky, Stochastic equations and differential geometry, Kluwer, 1990 | MR | Zbl