On the zeros of the $L$-function associated with the cubic theta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 173-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{ZNSL_2007_350_a9,
     author = {N. V. Proskurin},
     title = {On the zeros of the $L$-function associated with the cubic theta function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--186},
     year = {2007},
     volume = {350},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a9/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On the zeros of the $L$-function associated with the cubic theta function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 173
EP  - 186
VL  - 350
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a9/
LA  - ru
ID  - ZNSL_2007_350_a9
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On the zeros of the $L$-function associated with the cubic theta function
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 173-186
%V 350
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a9/
%G ru
%F ZNSL_2007_350_a9
N. V. Proskurin. On the zeros of the $L$-function associated with the cubic theta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 173-186. http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a9/

[1] T. Kubota, On automorphic functions and reciprocity law in a number theory, Lect. Math. Kyoto Univ., 2, 1969 | MR | Zbl

[2] S. J. Patterson, “A cubic analogue of the theta series, I, II”, J. Reine Angew. Math., 296 (1977), 125–161, 217–220 | DOI | MR | Zbl

[3] N. V. Proskurin, Cubic metaplectic forms and theta functions, Lect. Notes Math., 1677

[4] N. V. Proskurin, “O ryadakh Dirikhle, assotsiirovannykh s kubicheskoi teta-funktsiei”, Zap. nauchn. semin. POMI, 337, 2006, 212–232 | MR | Zbl