On the zeros of the $L$-function associated with the cubic theta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 173-186
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZNSL_2007_350_a9,
author = {N. V. Proskurin},
title = {On the zeros of the $L$-function associated with the cubic theta function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--186},
year = {2007},
volume = {350},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a9/}
}
N. V. Proskurin. On the zeros of the $L$-function associated with the cubic theta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 173-186. http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a9/
[1] T. Kubota, On automorphic functions and reciprocity law in a number theory, Lect. Math. Kyoto Univ., 2, 1969 | MR | Zbl
[2] S. J. Patterson, “A cubic analogue of the theta series, I, II”, J. Reine Angew. Math., 296 (1977), 125–161, 217–220 | DOI | MR | Zbl
[3] N. V. Proskurin, Cubic metaplectic forms and theta functions, Lect. Notes Math., 1677
[4] N. V. Proskurin, “O ryadakh Dirikhle, assotsiirovannykh s kubicheskoi teta-funktsiei”, Zap. nauchn. semin. POMI, 337, 2006, 212–232 | MR | Zbl