@article{ZNSL_2007_350_a2,
author = {V. N. Dubinin and V. Yu. Kim},
title = {Distortion theorems for bounded regular functions in the disk},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--39},
year = {2007},
volume = {350},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a2/}
}
V. N. Dubinin; V. Yu. Kim. Distortion theorems for bounded regular functions in the disk. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 26-39. http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a2/
[1] Z. Nehari, “Some inegualities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[2] N. A. Lebedev, “Nekotorye otsenki dlya funktsii, regulyarnykh i odnolistnykh v kruge”, Vestn. Leningr. un-ta, ser. mat., fiz., khim., 4:11 (1955), 3–21 | Zbl
[3] A. W. Goodman, Univalent functions, I, II, Mariner Publ. Comp. Tampa, 1983
[4] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl
[5] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn., 33 (2008), 101–110 ; arXiv: /0608531v2 | MR | Zbl
[6] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992 | MR | Zbl
[7] A. Yu. Solynin, “Granichnoe iskazhenie i ekstremalnye zadachi v nekotorykh klassakh odnolistnykh funktsii”, Zap. nauchn. semin. POMI, 204, 1993, 115–142 | MR
[8] W. Ma, D. Minda, “Two-point distortion theorems for bounded univalent functions”, Ann. Acad. Sci. Fenn. Math., 22 (1997), 425–444 | MR | Zbl
[9] J. A. Jenkins, “On two point distortion theorems for bounded univalent regular functions”, Kodai Math. J., 24 (2001), 329–338 | DOI | MR | Zbl
[10] O. Roth, “A distortion theorem for bounded univalent functions”, Ann. Acad. Sci. Fenn. Math., 27 (2002), 257–272 | MR | Zbl
[11] D. Kraus, O. Roth, “Weighted distortion in conformal mapping in euclidean, hyperbolic and elliptic geometry”, Ann. Acad. Sci. Fenn. Math., 31 (2006), 111–130 | MR | Zbl
[12] V. N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Mat. sb., 196:11 (2005), 53–74 | MR | Zbl
[13] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl
[14] M. Tsuji, Potential theory in modern function theory, Tokyo, 1959 | MR
[15] T. Kubo, “Hyperbolic transfinite diameter and some theorems on analytic functions in an annulus”, J. Math. Soc. Japan, 10 (1958), 348–364 | DOI | MR | Zbl
[16] V. N. Dubinin, E. V. Kostyuchenko, “Ekstremalnaya zadacha Teikhmyullera i teoremy iskazheniya v teorii odolistnykh funktsii”, Sib. mat. zhurn., 40:2 (1999), 302–306 | MR | Zbl
[17] A. I. Markushevich, Teoriya analiticheskikh funktsii, T. 1, M., 1967
[18] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchn. semin. POMI, 302, 2003, 38–51 | MR
[19] G. Pick, “Über die Konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet”, Wien. Ber., 126 (1917), 247–263 | Zbl
[20] V. N. Dubinin, “K neravenstvu Shvartsa na granitse dlya regulyarnykh v kruge funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 74–84 | MR | Zbl
[21] V. N. Dubinin, “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl
[22] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii”, Algebra i analiz, 9:3 (1997), 41–103 | MR