Mean values connected with the Dedekind zeta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 187-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{ZNSL_2007_350_a10,
     author = {O. M. Fomenko},
     title = {Mean values connected with the {Dedekind} zeta function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--198},
     year = {2007},
     volume = {350},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a10/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Mean values connected with the Dedekind zeta function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 187
EP  - 198
VL  - 350
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a10/
LA  - ru
ID  - ZNSL_2007_350_a10
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Mean values connected with the Dedekind zeta function
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 187-198
%V 350
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a10/
%G ru
%F ZNSL_2007_350_a10
O. M. Fomenko. Mean values connected with the Dedekind zeta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 187-198. http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a10/

[1] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, M., 1969

[2] H. Cohn, A classical invitation to algebraic numbers and class fields, New York etc., 1978 | MR

[3] P. Deligne, J.-P. Serre, “Formes modulaires de poids, 1”, Ann. Sci. École Norm. Sup (4), 7 (1974), 507–530 | MR | Zbl

[4] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl

[5] R. M. Kaufman, “Otsenka $L$-funktsii Gekke na polovinnoi pryamoi”, Zap. nauchn. semin. LOMI, 91, 1979, 40–51 | MR | Zbl

[6] D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line”, Acta Arithm, 49 (1988), 323–339 | MR | Zbl

[7] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl

[8] K. Chandrasekharan, A. Good, “On the number of integral ideals in Galois extensions”, Monatsh. Math., 95 (1983), 99–109 | DOI | MR | Zbl

[9] M. N. Huxley, “Exponential sums and the Riemann zeta-function, V”, Proc. London Math. Soc. (3), 90 (2005), 1–41 | DOI | MR | Zbl

[10] C. S. Yogananda, “Transformation formula for exponential sums involving Fourier coefficients modular forms”, Proc. Indian Acad. Sci. Math. Sci., 103:1 (1993), 1–25 | DOI | MR | Zbl

[11] A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helvetici, 50 (1975), 327–361 | DOI | MR | Zbl

[12] M. Jutila, Lectures on a method in the theory of exponential sums, Bombay, 1987 | MR

[13] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl

[14] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl

[15] K. Matsumoto, “Lifting and mean value theorems for automorphic $L$-functions”, Proc. London Math. Soc. (3), 90 (2005), 297–320 | DOI | MR | Zbl

[16] K. Chandrasekharan, R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl

[17] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl

[18] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS, 2004 | MR

[19] A. Sankaranarayanan, “Fundamental properties of symmetric square $L$-functions, I”, Illinois J. Math., 46 (2002), 23–43 | MR | Zbl

[20] P. B. Garrett, “Decomposition of Eisenstein series: Rankin triple product”, Ann. Math., 125 (1987), 209–235 | DOI | MR | Zbl

[21] O. M. Fomenko, “Koeffitsienty Fure parabolicheskikh form i avtomorfnye $L$-funktsii”, Zap. nauchn. semin. POMI, 237, 1997, 194–226 | MR | Zbl

[22] C. J. Moreno, F. Shahidi, “The $L$-function $L_3(s,\pi_Dl$) is entire”, Invent. Math., 79 (1985), 247–251 | DOI | MR | Zbl

[23] H. M. Kim, F. Shahidi, “Symmetric cube $L$-functions for $GL_2$ are entire”, Ann. Math., 150 (1999), 645–662 | DOI | MR | Zbl