@article{ZNSL_2007_350_a10,
author = {O. M. Fomenko},
title = {Mean values connected with the {Dedekind} zeta function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--198},
year = {2007},
volume = {350},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a10/}
}
O. M. Fomenko. Mean values connected with the Dedekind zeta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 22, Tome 350 (2007), pp. 187-198. http://geodesic.mathdoc.fr/item/ZNSL_2007_350_a10/
[1] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, M., 1969
[2] H. Cohn, A classical invitation to algebraic numbers and class fields, New York etc., 1978 | MR
[3] P. Deligne, J.-P. Serre, “Formes modulaires de poids, 1”, Ann. Sci. École Norm. Sup (4), 7 (1974), 507–530 | MR | Zbl
[4] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl
[5] R. M. Kaufman, “Otsenka $L$-funktsii Gekke na polovinnoi pryamoi”, Zap. nauchn. semin. LOMI, 91, 1979, 40–51 | MR | Zbl
[6] D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line”, Acta Arithm, 49 (1988), 323–339 | MR | Zbl
[7] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl
[8] K. Chandrasekharan, A. Good, “On the number of integral ideals in Galois extensions”, Monatsh. Math., 95 (1983), 99–109 | DOI | MR | Zbl
[9] M. N. Huxley, “Exponential sums and the Riemann zeta-function, V”, Proc. London Math. Soc. (3), 90 (2005), 1–41 | DOI | MR | Zbl
[10] C. S. Yogananda, “Transformation formula for exponential sums involving Fourier coefficients modular forms”, Proc. Indian Acad. Sci. Math. Sci., 103:1 (1993), 1–25 | DOI | MR | Zbl
[11] A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind”, Comment. Math. Helvetici, 50 (1975), 327–361 | DOI | MR | Zbl
[12] M. Jutila, Lectures on a method in the theory of exponential sums, Bombay, 1987 | MR
[13] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn, revised by D. R. Heath-Brown, New York, 1986 | MR | Zbl
[14] A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms”, Proc. of the Amalfi Conf. on Analytic Number Theory (Maiori, 1989), Salerno, 1992, 231–246 | MR | Zbl
[15] K. Matsumoto, “Lifting and mean value theorems for automorphic $L$-functions”, Proc. London Math. Soc. (3), 90 (2005), 297–320 | DOI | MR | Zbl
[16] K. Chandrasekharan, R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions”, Acta Math., 112 (1964), 41–67 | DOI | MR | Zbl
[17] M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl
[18] H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS, 2004 | MR
[19] A. Sankaranarayanan, “Fundamental properties of symmetric square $L$-functions, I”, Illinois J. Math., 46 (2002), 23–43 | MR | Zbl
[20] P. B. Garrett, “Decomposition of Eisenstein series: Rankin triple product”, Ann. Math., 125 (1987), 209–235 | DOI | MR | Zbl
[21] O. M. Fomenko, “Koeffitsienty Fure parabolicheskikh form i avtomorfnye $L$-funktsii”, Zap. nauchn. semin. POMI, 237, 1997, 194–226 | MR | Zbl
[22] C. J. Moreno, F. Shahidi, “The $L$-function $L_3(s,\pi_Dl$) is entire”, Invent. Math., 79 (1985), 247–251 | DOI | MR | Zbl
[23] H. M. Kim, F. Shahidi, “Symmetric cube $L$-functions for $GL_2$ are entire”, Ann. Math., 150 (1999), 645–662 | DOI | MR | Zbl