Generalized subrings of arithmetic rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 211-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The generalized subrings of $\mathbb{F}_q$ are classified, generalized subrings of $\mathbb{Z}/p^2$ are investigated and their complete classification is obtained when $p=2$. Examples of $\mathbb{F}_\infty$-similar generalized fields, a computation of $\mathbb{F}_\infty^{\otimes n}$, a description of cofinite subrings of $\mathbb{Z}_p$ and examples of subrimgs of $\mathbb{Z}_\infty$ are given. A conjecture on cofinite subrings of $\mathbb{Z}$ is proposed and arguments in its favour are considered.
@article{ZNSL_2007_349_a7,
     author = {A. L. Smirnov},
     title = {Generalized subrings of arithmetic rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--241},
     year = {2007},
     volume = {349},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a7/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Generalized subrings of arithmetic rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 211
EP  - 241
VL  - 349
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a7/
LA  - ru
ID  - ZNSL_2007_349_a7
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Generalized subrings of arithmetic rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 211-241
%V 349
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a7/
%G ru
%F ZNSL_2007_349_a7
A. L. Smirnov. Generalized subrings of arithmetic rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 211-241. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a7/

[1] N. Durov, New Approach to Arakelov Geometry, arXiv: /0704.2030

[2] A. L. Smirnov, “Graduirovannye monady i koltsa polinomov”, Zap. nauchn. semin. POMI, 349, 2007, 174–210 | MR

[3] Zh.-P. Serr, Kurs arifmetiki, Mir, Moskva, 1972 | MR | Zbl

[4] G. Birkgof, Teoriya reshetok, Nauka, Moskva, 1984 | MR