Generalized subrings of arithmetic rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 211-241
Voir la notice de l'article provenant de la source Math-Net.Ru
The generalized subrings of $\mathbb{F}_q$ are classified, generalized subrings of $\mathbb{Z}/p^2$ are investigated and their complete classification is obtained when $p=2$. Examples of $\mathbb{F}_\infty$-similar generalized fields, a computation of $\mathbb{F}_\infty^{\otimes n}$, a description of cofinite subrings of $\mathbb{Z}_p$ and examples of subrimgs of $\mathbb{Z}_\infty$ are given. A conjecture on cofinite subrings of $\mathbb{Z}$ is proposed and arguments in its favour are considered.
@article{ZNSL_2007_349_a7,
author = {A. L. Smirnov},
title = {Generalized subrings of arithmetic rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {211--241},
publisher = {mathdoc},
volume = {349},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a7/}
}
A. L. Smirnov. Generalized subrings of arithmetic rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 211-241. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a7/