Graded monads and rings of polynomials
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 174-210

Voir la notice de l'article provenant de la source Math-Net.Ru

Models for free graded monads over the category of sets are constructed. Certain rings of generalized noncommutative polynomials, generated by an operation of arbitrary arity, are implemented as subrings of classical rings of noncommutative polynomials. It is shown, that natural homomorphisms from rings of generalized polynomials to rings of the usual commutative polynomials are not inclusions as a rule. For instance, a natural homomorphism $\mathbb{F}_{1^2}[t]\to\mathbb{Z}[A,B]$, $t\mapsto(A,B)$, where $t$ is a binary variable, isn't an inclusion, even if $t$ is subjected to the alternating condition.
@article{ZNSL_2007_349_a6,
     author = {A. L. Smirnov},
     title = {Graded monads and rings of polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--210},
     publisher = {mathdoc},
     volume = {349},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a6/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Graded monads and rings of polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 174
EP  - 210
VL  - 349
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a6/
LA  - ru
ID  - ZNSL_2007_349_a6
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Graded monads and rings of polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 174-210
%V 349
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a6/
%G ru
%F ZNSL_2007_349_a6
A. L. Smirnov. Graded monads and rings of polynomials. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 174-210. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a6/