Involutions in $S_n$ and associated coadjoint orbits
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 150-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper we study the coadjoint orbits of the group $\mathrm{UT}(n,K)$ associated with involutions. We obtain a formula for dimension of the orbit. We construct a polarization for the canonical element of the orbit. We find a system of generators in the defining ideal of the orbit.
@article{ZNSL_2007_349_a5,
     author = {A. N. Panov},
     title = {Involutions in $S_n$ and associated coadjoint orbits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--173},
     year = {2007},
     volume = {349},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a5/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Involutions in $S_n$ and associated coadjoint orbits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 150
EP  - 173
VL  - 349
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a5/
LA  - ru
ID  - ZNSL_2007_349_a5
ER  - 
%0 Journal Article
%A A. N. Panov
%T Involutions in $S_n$ and associated coadjoint orbits
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 150-173
%V 349
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a5/
%G ru
%F ZNSL_2007_349_a5
A. N. Panov. Involutions in $S_n$ and associated coadjoint orbits. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 150-173. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a5/

[1] A. A. Kirillov, Lectures on the orbit method, Novosibisk, 2002

[2] A. A. Kirillov, “Variations on the triangular theme”, Amer. Math. Soc., Transl., 169, 1995, 43–72 | MR

[3] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17 (1962), 57–110 | MR | Zbl

[4] M. V. Ignatev, A. N. Panov, Coadjoint orbits for the group $\mathrm{UT}(7,K)$, arXiv: /Math.RT/0603649 | MR

[5] A. Melnikov, “$B$-Orbits in solutions to the equation $X^2=0$ in triangular matrices”, J. Algebra, 223 (2000), 101–108 | DOI | MR | Zbl

[6] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[7] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl