Hochschild cohomology of algebras of quaternion type. II. The family $Q(2\mathcal B)_1$ in characteristic 2
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 53-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, the Hochschild cohomology is investigated for algebras of quaternion type from the family $Q(2\mathcal B)_1$ over an algebraically closed field with characteristic 2. The 4-periodic bimodule resolution is constructed for the most part of algebras of this family. Using this resolution, the description in terms of generators and relations is given for the Hochschild cohomology algebra of the algebras under consideration.
@article{ZNSL_2007_349_a2,
     author = {A. I. Generalov and A. A. Ivanov and S. O. Ivanov},
     title = {Hochschild cohomology of algebras of quaternion {type.~II.} {The} family $Q(2\mathcal B)_1$ in characteristic~2},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--134},
     year = {2007},
     volume = {349},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a2/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - A. A. Ivanov
AU  - S. O. Ivanov
TI  - Hochschild cohomology of algebras of quaternion type. II. The family $Q(2\mathcal B)_1$ in characteristic 2
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 53
EP  - 134
VL  - 349
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a2/
LA  - ru
ID  - ZNSL_2007_349_a2
ER  - 
%0 Journal Article
%A A. I. Generalov
%A A. A. Ivanov
%A S. O. Ivanov
%T Hochschild cohomology of algebras of quaternion type. II. The family $Q(2\mathcal B)_1$ in characteristic 2
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 53-134
%V 349
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a2/
%G ru
%F ZNSL_2007_349_a2
A. I. Generalov; A. A. Ivanov; S. O. Ivanov. Hochschild cohomology of algebras of quaternion type. II. The family $Q(2\mathcal B)_1$ in characteristic 2. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 53-134. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a2/

[1] S. Eilenberg, S. MacLane, “Cohomology theory in abstract groups, I”, Ann. Math., 48 (1947), 51–78 | DOI | MR | Zbl

[2] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, M., 1960

[3] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. Math., 78 (1963), 267–288 | DOI | MR | Zbl

[4] M. Gerstenhaber, S. D. Schack, “Algebraic cohomology and deformation theory”, Deformation theory of algebras and structures and applications, NATO Adv. Sci., Ser. C Math. and Phys. Sci., 247, eds. M. Hazewinkel, M. Gerstenhaber, Kluwer Acad. Publ., Dordrecht, 1988, 11–264 | MR

[5] Th. Holm, “The Hochschild cohomology ring of a modular group algebra: the commutative case”, Commun. Algebra, 24 (1996), 1957–1969 | DOI | MR | Zbl

[6] C. Cibils, A. Solotar, “Hochschild cohomology algebra of Abelian groups”, Arch. Math., 68 (1997), 17–21 | DOI | MR | Zbl

[7] S. F. Siegel, S. J. Witherspoon, “The Hochschild cohomology ring of a group algebra”, Proc. London Math. Soc., 79 (1999), 131–157 | DOI | MR | Zbl

[8] K. Erdmann, Th. Holm, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$”, Forum Math., 11 (1999), 177–201 | DOI | MR | Zbl

[9] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa. I: Seriya $D(3\mathcal{K})$ v kharakteristike $2$”, Algebra i analiz, 16:6 (2004), 53–122 | MR

[10] A. I. Generalov, “Kogomologii Khokhshilda algebr kvaternionnogo tipa. I: Obobschennye gruppy kvaternionov”, Algebra i analiz, 18:1 (2006), 55–107 | MR

[11] K. Erdmann, Blocks of tame representation type and related algebras, Lect. Notes Math., 1428, Heidelberg, Berlin, 1990 | MR

[12] A. I. Generalov, N. Yu. Kosovskaya, “Kogomologii Khokhshilda algebr Lyu–Shultsa”, Algebra i analiz, 18:4 (2006), 39–82 | MR

[13] K. Erdmann, Th. Holm, N. Snashall, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$, II”, Algebras Repr. Theory, 5 (2002), 457–482 | DOI | MR | Zbl

[14] M. A. Kachalova, “Kogomologii Khokhshilda algebry Mebiusa”, Zap. nauchn. semin. POMI, 330, 2006, 173–200 | MR | Zbl

[15] Th. Holm, “Hochschild cohomology of tame blocks”, J. Algebra, 271 (2002), 798–826 | DOI | MR

[16] K. Erdmann, A. Skowroński, “The stable Calabi–Yau dimension of tame symmetric algebras”, J. Math. Soc. Japan, 58:1 (2006), 97–128 | DOI | MR | Zbl

[17] Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type”, J. Algebra, 211 (1999), 159–205 | DOI | MR | Zbl

[18] M. J. Bardzell, “The alternating syzygy behavior of monomial algebras”, J. Algebra, 188 (1997), 69–89 | DOI | MR | Zbl

[19] D. Happel, “Hochschild cohomology of finite-dimensional algebras”, Lect. Notes Math., 1404, 1989, 108–126 | MR | Zbl

[20] A. I. Generalov, M. A. Kachalova, “Bimodulnaya rezolventa algebry Mebiusa”, Zap. nauchn. semin. POMI, 321, 2005, 36–66 | MR | Zbl