Basic reductions for the description of normal subgroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 30-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Classification of subgroups in a Chevalley group $G(\Phi,R)$ over a commutative ring $R$, normalised by the elementary subgroup $E(\Phi,R)$, is well known. However, for exceptional groups one cannot find in the available literature neither the parabolic reduction, nor the level reduction. This is due to the fact that the Abe–Suzuki–Vaserstein proof relied on localisation and reduction modulo Jacobson radical. Recently for the groups of types $\operatorname{E}_6$, $\operatorname{E}_7$ and $\operatorname{F}_4$ the first-named author, M. Gavrilovich and S. Nikolenko proposed an even more straightforward geometric approach to the proof of structure theorems, similar to the one used for classical cases. In the present work we give still simpler proofs of two key auxiliary results of the geometric approach. First, we carry through the parabolic reduction in full generality: for all parabolic subgroups of all Chevalley groups of rank $\ge 2$. At that we succeeded in avoiding any reference to the structure of internal Chevalley modules, or explicit calculations of the centralisers of unipotent elements. Second, we prove the level reduction, also for the most general situation of double levels, which arise for multiply-laced root systems.
@article{ZNSL_2007_349_a1,
     author = {N. A. Vavilov and A. K. Stavrova},
     title = {Basic reductions for the description of normal subgroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--52},
     year = {2007},
     volume = {349},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - A. K. Stavrova
TI  - Basic reductions for the description of normal subgroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 30
EP  - 52
VL  - 349
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a1/
LA  - ru
ID  - ZNSL_2007_349_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A A. K. Stavrova
%T Basic reductions for the description of normal subgroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 30-52
%V 349
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a1/
%G ru
%F ZNSL_2007_349_a1
N. A. Vavilov; A. K. Stavrova. Basic reductions for the description of normal subgroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 30-52. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a1/

[1] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i Analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] Kh. Bass, Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[3] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[4] N. Burbaki, Gruppy i algebry Li. Glavy IV–VI, M., 1972, 1–334 | Zbl

[5] N. A. Vavilov, “Vychisleniya v isklyuchitelnykh gruppakh”, Vestnik Samarskogo un-ta, 33 (2007)

[6] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[7] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[8] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm{E}_6$”, Algebra i Analiz, 19:5 (2007), 37–64 | MR

[9] N. A. Vavilov, S. I. Nikolenko, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm{F}_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[10] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR

[11] N. A. Vavilov, A. V. Stepanov, “Standartnaya kommutatsionnaya formula”, Vestn. SPbGU, 2007 (to appear)

[12] I. Z. Golubchik, “O normalnykh delitelyakh lineinykh i unitarnykh grupp nad assotsiativnym koltsom”, Prostranstva nad algebrami i nekotorye voprosy teorii setei, Ufa, 1985, 122–142 | MR

[13] I. Z. Golubchik, “Gruppy tipa Li nad $PI$-koltsami”, Fund. i prikladn. mat., 3:2 (1997), 399–424 | MR | Zbl

[14] V. G. Kazakevich, A. K. Stavrova, “Podgruppy, normalizuemye kommutantom podgruppy Levi”, Zap. nauchn. semin. POMI, 319, 2004, 199–215 | MR | Zbl

[15] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[16] A. V. Stepanov, “O normalnom stroenii polnoi lineinoi gruppy nad koltsom”, Zap. nauchn. semin. POMI, 236, 1997, 166–182 | MR | Zbl

[17] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsom mnogochlenov”, Izv. AN SSSR, Ser. Mat., 41:2 (1977), 235–252 | MR | Zbl

[18] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J. (2), 21:3 (1969), 474–494 | DOI | MR | Zbl

[19] E. Abe, “Chevalley groups over commutative rings”, Radical theory, Proc. Conf. Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR

[20] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Algebraic $\mathrm{K}$-theory and algebraic number theory, Proc. Semin., Contemp. Math., 83, 1989, 1–17 | MR | Zbl

[21] E. Abe, “Chevalley groups over commutative rings: normal subgroups and automorphisms”, Second international conference on algebra dedicated to the memory of A. I. Shirshov, Proceedings of the conference on algebra (August 20–25, 1991, Barnaul, Russia), Contemp. Math., 184, American Mathematical Society, Providence, RI, 1995, 13–23 | MR | Zbl

[22] E. Abe, J. Hurley, “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl

[23] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[24] H. Azad, M. Barry, G. M. Seitz, “On the structure of parabolic subgroups”, Comm. Algebra, 18 (1990), 551–562 | DOI | MR | Zbl

[25] A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[26] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Algebraic $\mathrm{K}$-theory, Proc. Conf. (Oberwolfach, 1980), Lecture Notes Math., 967, Springer, Berlin, 1982, 1–22 | MR

[27] A. Bak, “Nonabelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[28] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion, application to relative classical-like groups”, J. Pure Appl. Algebra, 2008 (to appear)

[29] A. Bak, N. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[30] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl

[31] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. II: Normal subgroups”, Algebra Colloquium (to appear)

[32] H. Bass, “$\mathrm{K}$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 1964, no. 22, 5–60 | DOI | MR | Zbl

[33] H. Bass, “Unitary algebraic $K$-theory”, Algebr. $K$-Theory, III, Lecture Notes Math., 343, Springer, Berlin, 1973, 57–265 | MR

[34] R. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley, London et al., 1972 | MR

[35] D. L. Costa, G. E. Keller, “The $\mathrm{E}(2,A)$ sections of $\mathrm{SL}(2,A)$”, Ann. of Math., 134:1 (1991), 159–188 | DOI | MR | Zbl

[36] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427:1 (1991), 51–105 | MR

[37] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm{G}_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[38] M. Demazure, A. Grothendieck,, Schémas en groupes, I, II, III, Lecture Notes Math., 151–153, Springer, Berlin, 1971

[39] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm{K}$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin et al., 1989 | MR | Zbl

[40] R. Hazrat, “Dimension theory and non-stable $\mathrm{K}_1$ of quadratic module”, $K$-Theory, 27 (2002), 293–327 | DOI | MR

[41] R. Hazrat, N. Vavilov, “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[42] R. Hazrat, N. Vavilov,, “Bak's work on lower $\mathrm{K}$-theory of rings” (to appear)

[43] Li Fuan, Liu Mulan, “Generalized sandwich theorem”, $K$-Theory, 1 (1987), 171–184 | DOI | MR

[44] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[45] V. M. Petechuk, “Stability structure of linear group over rings”, Mat. Studii, 16:1 (2001), 13–24 | MR | Zbl

[46] G. E. Roehrle, “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl

[47] A. Stavrova, Normal structure of maximal parabolic subgroups in Chevalley groups over rings, Preprint POMI 10–07.2007 | MR

[48] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[49] A. Stepanov, N. Vavilov,, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[50] K. Suzuki, “On normal subgroups of twisted Chevalley groups over local rings”, Sci. Rep. Tokyo Kyoiku Daigaku, 13 (1977), 237–249 | MR

[51] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl

[52] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part II, Contemp. Math., 55, 1986, 693–710 | MR | Zbl

[53] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Lecture Notes Math., 854, Springer, Berlin, 1981, 454–465 | MR

[54] L. N. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl

[55] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J. (2), 36:5 (1986), 219–230 | DOI | MR

[56] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[57] L. N. Vaserstein, You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR

[58] N. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl

[59] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[60] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Rend. Sem. Mat. Univ. Padova, 204:1 (2000), 201–250 | MR

[61] N. Vavilov, “An $\mathrm{A}_3$-proof of structure theorems for Chevalley groups of types $\mathrm{E}_6$ and $\mathrm{E}_7$”, Intern. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[62] N. Vavilov, “Structure of exceptional groups over rings”, Proc. 3rd Intern. Congress Algebra and Combinatorics (Beijing and Xian, 2007) (to appear)

[63] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Appl. Math., 45 (1996), 73–115 | DOI | MR

[64] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl

[65] Zhang, Zuhong, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 2007 (to appear) | MR