On subgroups of symplectic group containing a~subsystem subgroup
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 5-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma=\operatorname{GSp}(2l,R)$ be the general symplectic group of rank $l$ over a commutative ring $R$ such, that $2\in R^*$, and $\nu$ be a symmetric equivalence relation on the index set $\{1,\ldots,l,-l,\ldots,1\}$, all of whose classes contain at least 3 elements. In the present paper we prove that if a subgroup $H$ of $\Gamma$ contains the group $E_{\Gamma}(\nu)$ of elementary block diagonal matrices of type $\nu$, then $H$ normalises the subgroup generated by all elementary symplectic transvections $T_{ij}(\xi)\in H$. Combined with the previous results, this completely describes overgroups of subsystem subgroups in this case. Similar results for subgroups of $\operatorname{GL}(n,R)$ were established by Z. I. Borewicz and the author in early 1980-ies, while for $\operatorname{GSp}(2l,R)$ and $\operatorname{GO}(n,R)$ they have been announced by the author in late 1980-ies, but the complete proof for the symplectic case has not been published before.
@article{ZNSL_2007_349_a0,
     author = {N. A. Vavilov},
     title = {On subgroups of symplectic group containing a~subsystem subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--29},
     publisher = {mathdoc},
     volume = {349},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - On subgroups of symplectic group containing a~subsystem subgroup
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 29
VL  - 349
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/
LA  - ru
ID  - ZNSL_2007_349_a0
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T On subgroups of symplectic group containing a~subsystem subgroup
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-29
%V 349
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/
%G ru
%F ZNSL_2007_349_a0
N. A. Vavilov. On subgroups of symplectic group containing a~subsystem subgroup. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 5-29. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/