On subgroups of symplectic group containing a subsystem subgroup
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 5-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma=\operatorname{GSp}(2l,R)$ be the general symplectic group of rank $l$ over a commutative ring $R$ such, that $2\in R^*$, and $\nu$ be a symmetric equivalence relation on the index set $\{1,\ldots,l,-l,\ldots,1\}$, all of whose classes contain at least 3 elements. In the present paper we prove that if a subgroup $H$ of $\Gamma$ contains the group $E_{\Gamma}(\nu)$ of elementary block diagonal matrices of type $\nu$, then $H$ normalises the subgroup generated by all elementary symplectic transvections $T_{ij}(\xi)\in H$. Combined with the previous results, this completely describes overgroups of subsystem subgroups in this case. Similar results for subgroups of $\operatorname{GL}(n,R)$ were established by Z. I. Borewicz and the author in early 1980-ies, while for $\operatorname{GSp}(2l,R)$ and $\operatorname{GO}(n,R)$ they have been announced by the author in late 1980-ies, but the complete proof for the symplectic case has not been published before.
@article{ZNSL_2007_349_a0,
     author = {N. A. Vavilov},
     title = {On subgroups of symplectic group containing a~subsystem subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--29},
     year = {2007},
     volume = {349},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - On subgroups of symplectic group containing a subsystem subgroup
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 29
VL  - 349
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/
LA  - ru
ID  - ZNSL_2007_349_a0
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T On subgroups of symplectic group containing a subsystem subgroup
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-29
%V 349
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/
%G ru
%F ZNSL_2007_349_a0
N. A. Vavilov. On subgroups of symplectic group containing a subsystem subgroup. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 16, Tome 349 (2007), pp. 5-29. http://geodesic.mathdoc.fr/item/ZNSL_2007_349_a0/

[1] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 64, 1976, 12–29 | Zbl

[2] Z. I. Borevich, N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Tr. Mat. in-ta AN SSSR, 148, 1978, 43–57 | MR | Zbl

[3] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp, soderzhaschikh gruppu kletochno diagonalnykh matrits, v polnoi lineinoi gruppe nad koltsom”, Matematika. Izv. VUZ'ov, 1982, no. 11, 12–16 | MR | Zbl

[4] Z. I. Borevich, N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad kommutativnym koltsom”, Dokl. AN SSSR, 267:4 (1982), 777–778 | MR | Zbl

[5] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165, 1984, 24–42 | MR

[6] Z. I. Borevich, N. A. Vavilov, V. Narkevich, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom”, Zap. nauchn. semin. LOMI, 94, 1979, 13–20 | MR | Zbl

[7] N. A. Vavilov, “O parabolicheskikh podgruppakh grupp Shevalle nad polulokalnym koltsom”, Zap. nauchn. semin. LOMI, 75, 1978, 43–58 | MR | Zbl

[8] N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschikh gruppu diagonalnykh matrits”, Vestn. Leningr. un-ta, 1981, no. 1, 10–15 | MR | Zbl

[9] N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu kletochno-diagonalnykh matrits”, Vestn. Leningr. un-ta, 1983, no. 1, 16–21 | MR | Zbl

[10] N. A. Vavilov, Podgruppy rasschepimykh klassicheskikh grupp, Dokt. diss., Leningr. gos. un-t, 1987, 334 pp. | Zbl

[11] N. A. Vavilov, “Stroenie rasschepimykh klassicheskikh grupp nad kommutativnym koltsom”, Dokl. AN SSSR, 299:6 (1988), 1300–1303 | MR | Zbl

[12] N. A. Vavilov, “O podgruppakh rasschepimykh ortogonalnykh grupp nad koltsom”, Sib. Mat. Zhurn., 29:4 (1988), 31–43 | MR | Zbl

[13] N. A. Vavilov, “O podgruppakh rasschepimykh klassicheskikh grupp”, Tr. Mat. in-ta AN SSSR, 183, 1990, 29–42 | MR | Zbl

[14] N. A. Vavilov, “O podgruppakh polnoi simplekticheskoi gruppy nad kommutativnym koltsom”, Koltsa i Moduli. Predelnye Teoremy Teorii Veroyatnostei, vyp.3, Izd-vo SPbGU, 1993, 16–38 | MR

[15] N. A. Vavilov, “O podgruppakh rasschepimykh ortogonalnykh grupp, II”, Zap. nauchn. semin. POMI, 265, 1999, 42–63 | MR

[16] N. A. Vavilov, “Podgruppy rasschepimykh ortogonalnykh grupp nad kommutativnym koltsom”, Zap. nauchn. semin. POMI, 281, 2001, 35–59 | MR | Zbl

[17] N. A. Vavilov, “O podgruppakh spinornoi gruppy, soderzhaschikh rasschepimyi maksimalnyi tor, II”, Zap. nauchn. semin. POMI, 289, 2002, 37–56 | MR | Zbl

[18] N. A. Vavilov, “Podgruppy gruppy $\mathrm{SL}_n$ nad polulokalnym koltsom”, Zap. nauchn. semin. POMI, 343, 2007, 33–53 | MR

[19] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[20] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. sem. POMI, 330, 2006, 36–76 | MR | Zbl

[21] N. A. Vavilov, S. I. Nikolenko, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm{F}_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[22] N. A. Vavilov, E. V. Dybkova, “Podgruppy polnoi simplekticheskoi gruppy, soderzhaschie gruppu diagonalnykh matrits, I, II”, Zap. nauchn. semin. LOMI, 103, 1980, 31–47 ; 132, 1983, 44–56 | MR | Zbl | MR

[23] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauch. semin. POMI, 272, 2000, 68–85 | MR | Zbl

[24] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR | Zbl

[25] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i Analiz, 19:2 (2007), 10–51 | MR

[26] N. A. Vavilov, A. V. Stepanov, “O podgruppakh polnoi lineinoi gruppy nad koltsom, udovletvoryayuschim usloviyam stabilnosti”, Matematika. Izv. VUZ'ov, 1989, no. 10, 19–25 | MR

[27] N. A. Vavilov, E. A. Filippova, “Nadgruppy $\mathrm{A}_{l-1}$ v giperbolicheskom vlozhenii” (to appear)

[28] I. Z. Golubchik, “O podgruppakh polnoi lineinoi gruppy nad assotsiativnym koltsom”, Uspekhi mat. nauk, 39:1 (1984), 125–126 | MR | Zbl

[29] E. V. Dybkova, “O setevykh podgruppakh giperbolicheskikh unitarnykh grupp”, Algebra i Analiz, 9:4 (1997), 87–97 | MR | Zbl

[30] E. V. Dybkova, “Naddiagonalnye podgruppy giperbolicheskoi unitarnoi gruppy dlya khoroshego formennogo koltsa nad polem”, Zap. nauchn. semin. POMI, 236, 1997, 87–96 | MR | Zbl

[31] E. V. Dybkova, “Formennye seti i reshetka naddiagonalnykh podgrupp v simplekticheskoi gruppe nad polem kharakteristiki 2”, Algebra i Analiz, 10:4 (1998), 113–129 | MR | Zbl

[32] E. V. Dybkova, “O naddiagonalnykh podgruppakh giperbolicheskoi unitarnoi gruppy nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 289, 2002, 154–206 | MR | Zbl

[33] E. V. Dybkova, “Naddiagonalnye podgruppy giperbolicheskoi unitarnoi gruppy dlya khoroshego formennogo koltsa nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 305, 2003, 121–135 | MR

[34] E. V. Dybkova, “Teorema Borevicha dlya giperbolicheskoi unitarnoi gruppy nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 321, 2005, 136–167 | MR | Zbl

[35] E. V. Dybkova, Podgruppy giperbolicheskikh unitarnykh grupp, Dokt. Diss. SPb Gos. Un-t, 2006, 182 pp.

[36] E. V. Dybkova, “Nadgruppy diagonalnoi gruppy v giperbolicheskoi unitarnoi gruppe nad prostym artinovym koltsom, I”, Zap. nauchn. semin. POMI, 338, 2006, 155–172 | MR | Zbl

[37] V. A. Koibaev, “O podgruppakh polnoi lineinoi gruppy, soderzhaschikh gruppu elementarnykh kletochno-diagonalnykh matrits”, Vestn. Leningr. un-ta, 1982, no. 13, 33–40 | MR | Zbl

[38] V. A. Koibaev, “Podgruppy polnoi lineinoi gruppy nad konechnym polem, soderzhaschie gruppu elementarnykh kletochno-diagonalnykh matrits”, Strukturnye svoistva grupp, Severo-Osetinskii un-t, Ordzhonikidze, 1982, 6–12

[39] V. I. Kopeiko, “Stabilizatsiya simplekticheskikh grupp nad koltsom mnogochlenov”, Mat. Sb., 106:1 (1978), 94–107 | MR | Zbl

[40] A. Kkhatib, “O podgruppakh rasschepimoi ortogonalnoi gruppy nad kommutativnym koltsom”, Koltsa i moduli. Predelnye teoremy Teorii Veroyatnostei, vyp. 3, Izd-vo SPbGU, 1993, 74–86 | MR | Zbl

[41] O. T. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[42] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. semin. POMI, 305, 2003, 195–225 | MR

[43] V. A. Petrov, Nadgruppy klassicheskikh grupp, Kand. Diss., SPb Gos. Un-t, 2005, 1–129

[44] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1973 | MR | Zbl

[45] A. V. Stepanov, Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. Diss., Leningr. Gos. Un-t, 1987, 1–112

[46] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[47] A. Bak, The stable structure of quadratic modules, Thesis, Columbia Univ., 1969

[48] A. Bak, K-theory of forms, Annals of Mathematics Studies, 98, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[49] A. Bak, Lectures on dimension theory, group valued functors, and nonstable K-theory, Buenos Aires, 1995

[50] A. Bak, M. Morimoto, “Equivariant surgery with middle-dimensional singular sets, I”, Forum Math., 8:3 (1996), 267–302 | DOI | MR | Zbl

[51] A. Bak, A. Stepanov, “Dimension theory and nonstable K-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[52] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[53] H. Bass, “Unitary algebraic K-theory”, Lecture Notes Math., 343, Springer, 1973, 57–265 | MR

[54] D. Costa, G. Keller, “Radix redux: normal subgroups of symplectic groups”, J. Reine Angew. Math., 427 (1992), 51–105 | MR | Zbl

[55] F. Grünewald, J. Mennicke, L. N. Vaserstein, “On symplectic groups over polynomial rings”, Math. Z., 206:1 (1991), 35–56 | DOI | MR | Zbl

[56] A. Hahn, O. T.O'Meara, The classical groups and K-theory, Springer, Berlin et al., 1989 | MR

[57] R. Hazrat, “Dimension theory and nonstable $\mathrm{K}_1$ of quadratic module”, $K$-Theory, 27 (2002), 293–327 | DOI | MR

[58] R. Hazrat, N. A. Vavilov, “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[59] R. Hazrat, N. A. Vavilov, “Bak's work on K-theory of rings” (to appear)

[60] Li Fuan, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, New Series, 3:3 (1987), 247–255 | DOI | MR | Zbl

[61] V. A. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[62] A. I. Steinbach, “Subgroups of classical groups generated by transvections or Siegel transvections, I, II”, Geom. Dedic., 68:3 (1997), 281–322 ; 323–357 | DOI | MR | Zbl | MR | Zbl

[63] A. Stepanov, “Nonstandard subgroups between $E_n(R)$ and $\mathrm{GL}_n(A)$”, Algebra Colloquium, 10:3 (2004), 321–334 | MR

[64] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[65] A. Stepanov, N. Vavilov, You Hong, “Overgroups of semi-simple subgroups via localisation-completion”, Zap. nauch. semin. LOMI, 2004 (to appear)

[66] G. Taddei, “Invariance du sous-groupe symplectique élémentaire dans le groupe symplectique sur un anneau”, C. R. Acad. Sci Paris, Sér I, 295:2 (1982), 47–50 | MR | Zbl

[67] F. Timmesfeld, “Groups generated by $k$-transvections”, Invent. Math., 100:1 (1990), 167–206 | DOI | MR | Zbl

[68] F. Timmesfeld, “Groups generated by $k$-root subgroups”, Invent. Math., 106:3 (1991), 575–666 | DOI | MR | Zbl

[69] F. Timmesfeld, “Groups generated by $k$-root subgroups: a survey”, Groups, combinatorics geometry (Durham, 1990), Cambridge Univ. Press, 1992, 183–204 | MR | Zbl

[70] F. Timmesfeld, “Abstract root subgroups and quadratic actions”, With an appendix by A. E. Zalesskii, Adv. Math., 142:1 (1999), 1–150 | DOI | MR | Zbl

[71] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[72] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima, 1990), World Scientific, London et al., 1991, 219–335 | MR | Zbl

[73] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc. Conf. Groups of Lie type and their Geometries (Como, 1993), Cambridge Univ. Press, 1995, 233–280 | MR | Zbl

[74] You Hong, “Overgroups of symplectic group in linear group over commutative rings”, J. Algebra, 282:1 (2004), 23–32 | DOI | MR | Zbl