@article{ZNSL_2007_348_a8,
author = {M. Fuchs and G. A. Seregin},
title = {Existence of global solutions for a parabolic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {254--271},
year = {2007},
volume = {348},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/}
}
M. Fuchs; G. A. Seregin. Existence of global solutions for a parabolic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/
[1] G. Astarita, G. Marrucci, Principles of non-Newtonian fluid mechanics, McGraw-Hill, London, 1974
[2] R. Bird, R. Armstrong, O. Hassager, Dynamics of polymeric liquids. V. 1. Fluid mechanics, Second Edition, John Wiley, 1987
[3] O. A. Ladyzhenskaya, “On nonlinear problems of continuum mechanics”, Proc. International Congr. Math. (Moscow, 1966), Nauka, Moscow, 1968, 560–573
[4] O. A. Ladyzhenskaya, Mathematical problems in the dynamics of a viscous incompressible fluid, 2nd rev. aug. ed., Nauka, Moscow, 1970
[5] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | Zbl
[6] J. Málek, J. Necăs, M. Ruzicka, “On weak solutions to a class of non-Newtonian incompressible fluids in bounded three dimensional domains. The case $p\ge2$”, Adv. Diff. Equ., 6 (2001), 257–302 | MR
[7] J. Málek, J. Necăs, M. Rokyta, M. Ruzicka, Weak and measure-valued solutions to evolution partial differential equations, Appl. Math. Math. Compl., 13, Chapman and Hall, London, 1996
[8] E. Zeidler, Nonlinear Functional Analysis II/B–Nonlinear Monotone Operators, Springer Verlag, Berlin–Heidelberg–New York, 1990