Existence of global solutions for a parabolic
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we consider an initial-boundary value problem describing a nonlinear variant of the nonstationary Stokes equation. We prove the existence of a (unique) global solution with Galerkin-type arguments. This result is not new but the method can be seen as an alternative to the technique presented for example in [7].
@article{ZNSL_2007_348_a8,
     author = {M. Fuchs and G. A. Seregin},
     title = {Existence of global solutions for a parabolic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--271},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - G. A. Seregin
TI  - Existence of global solutions for a parabolic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 254
EP  - 271
VL  - 348
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/
LA  - en
ID  - ZNSL_2007_348_a8
ER  - 
%0 Journal Article
%A M. Fuchs
%A G. A. Seregin
%T Existence of global solutions for a parabolic
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 254-271
%V 348
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/
%G en
%F ZNSL_2007_348_a8
M. Fuchs; G. A. Seregin. Existence of global solutions for a parabolic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/