Existence of global solutions for a parabolic
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we consider an initial-boundary value problem describing a nonlinear variant of the nonstationary Stokes equation. We prove the existence of a (unique) global solution with Galerkin-type arguments. This result is not new but the method can be seen as an alternative to the technique presented for example in [7].
@article{ZNSL_2007_348_a8,
     author = {M. Fuchs and G. A. Seregin},
     title = {Existence of global solutions for a parabolic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--271},
     year = {2007},
     volume = {348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - G. A. Seregin
TI  - Existence of global solutions for a parabolic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 254
EP  - 271
VL  - 348
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/
LA  - en
ID  - ZNSL_2007_348_a8
ER  - 
%0 Journal Article
%A M. Fuchs
%A G. A. Seregin
%T Existence of global solutions for a parabolic
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 254-271
%V 348
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/
%G en
%F ZNSL_2007_348_a8
M. Fuchs; G. A. Seregin. Existence of global solutions for a parabolic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/

[1] G. Astarita, G. Marrucci, Principles of non-Newtonian fluid mechanics, McGraw-Hill, London, 1974

[2] R. Bird, R. Armstrong, O. Hassager, Dynamics of polymeric liquids. V. 1. Fluid mechanics, Second Edition, John Wiley, 1987

[3] O. A. Ladyzhenskaya, “On nonlinear problems of continuum mechanics”, Proc. International Congr. Math. (Moscow, 1966), Nauka, Moscow, 1968, 560–573

[4] O. A. Ladyzhenskaya, Mathematical problems in the dynamics of a viscous incompressible fluid, 2nd rev. aug. ed., Nauka, Moscow, 1970

[5] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969 | Zbl

[6] J. Málek, J. Necăs, M. Ruzicka, “On weak solutions to a class of non-Newtonian incompressible fluids in bounded three dimensional domains. The case $p\ge2$”, Adv. Diff. Equ., 6 (2001), 257–302 | MR

[7] J. Málek, J. Necăs, M. Rokyta, M. Ruzicka, Weak and measure-valued solutions to evolution partial differential equations, Appl. Math. Math. Compl., 13, Chapman and Hall, London, 1996

[8] E. Zeidler, Nonlinear Functional Analysis II/B–Nonlinear Monotone Operators, Springer Verlag, Berlin–Heidelberg–New York, 1990