Existence of global solutions for a parabolic
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this note we consider an initial-boundary value problem
describing a nonlinear variant of the nonstationary Stokes
equation. We prove the existence of a (unique) global
solution with Galerkin-type arguments. This result is not
new but the method can be  seen as an alternative to the
technique presented for example in [7].
			
            
            
            
          
        
      @article{ZNSL_2007_348_a8,
     author = {M. Fuchs and G. A. Seregin},
     title = {Existence of global solutions for a parabolic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {254--271},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/}
}
                      
                      
                    M. Fuchs; G. A. Seregin. Existence of global solutions for a parabolic. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 254-271. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a8/