@article{ZNSL_2007_348_a7,
author = {V. A. Solonnikov and E. V. Frolova},
title = {On the justification of the quasistationary approximation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--253},
year = {2007},
volume = {348},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/}
}
V. A. Solonnikov; E. V. Frolova. On the justification of the quasistationary approximation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 209-253. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/
[1] L. A. Caffarell, “Some aspects of the one-phase Stefan problem”, Indiana Univ. Math. J., 27 (1978), 73–77 | DOI | MR | Zbl
[2] D. Kinderlehrer, L. Nirenberg, “The smoothness of the free boundary in the one-phase Stefan problem”, Comm. Pure Appl. Math., 31 (1978), 257–282 | DOI | MR | Zbl
[3] A. M. Meirmanov, “O klassicheskoi razreshimosti zadachi Stefana”, Dokl. AN SSSR, 249:6 (1979), 1309–1312 | MR | Zbl
[4] E. I. Hanzawa, “Classical solution of the Stefan problem”, Tohoku Math. J., 33 (1981), 297–335 | DOI | MR | Zbl
[5] A. M. Meirmanov, Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR | Zbl
[6] E. V. Radkevich, A. S. Melikulov, Kraevye zadachi so svobodnoi granitsei, FAN, Tashkent, 1988 | MR | Zbl
[7] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Lect. Notes Math., 1812, Springer, 2003, 123–175 | MR | Zbl
[8] J. Escher and G. Somonet, “Classical solutions of multidimentional Hele-Show models”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl
[9] Yi. Fahuai, “Classical solutions of quasi-stationary Stefan problem”, Chin. Ann. Math., 17:2 (1996), 175–186 | MR | Zbl
[10] E. V. Frolova, “Kvazistatsionarnoe priblizhenie dlya zadacha Stefana”, Probl. mat. analiza, 31, 2005, 167–179 | Zbl
[11] G. I. Bizhanova, V. A. Solonnikov, “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii vtorogo poryadka”, Algebra i analiz, 12:6 (2000), 98–139 | MR
[12] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publ., 1996 | MR | Zbl
[13] G. I. Bizhanova, V. A. Solonnikov, “O razreshimosti nachalno-kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka s proizvodnoi po vremeni v granichnom uslovii v vesovom gelderovskom prostranstve funktsii”, Algebra i analiz, 5:1 (1993), 109–142 | MR | Zbl
[14] V. A. Solonnikov, “On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop”, Interfaces and Free Boundaries, 1 (1999), 125–173 | DOI | MR | Zbl
[15] V. A. Solonnikov, E. V. Frolova, “Vesovye otsenki resheniya lineinoi zadachi, svyazannoi s odnofaznoi zadachei Stefana, v sluchae stremleniya k nulyu udelnoi teploemkosti”, Zap. nauchn. semin. POMI, 336, 2006, 239–263 | MR | Zbl
[16] V. A. Solonnikov, A. G. Khachatryan, “Otsenki reshenii parabolicheskikh nachalno-kraevykh zadach v vesovykh gelderovskikh normakh”, Tr. MIAN SSSR, 147, 1980, 147–155 | MR | Zbl
[17] G. I. Bizhanova, “Issledovanie razreshimosti v vesovom gelderovskom prostranstve funktsii mnogomernykh dvukhfaznykh zadach Stefana i nestatsionarnoi filtratsii Florina dlya parabolicheskikh uravnenii vtorogo poryadka”, Zap. nauchn. semin. LOMI, 213, 1994, 14–47
[18] V. S. Belonosov, T. I. Zelenyak, Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, NGU, Novosibirsk, 1975 | MR
[19] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[20] A. V. Ivanov, Issledovanie svoistv obobschennykh reshenii kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka, Kand. dissertatsiya, LGU, 1966
[21] N. V. Krylov, M. V. Safonov, “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR, 44 (1980), 161–175 | MR | Zbl
[22] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, 1977 | MR | Zbl
[23] E. M. Laidis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971, 287 pp. | MR