On the justification of the quasistationary approximation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 209-253

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the unique solvability of the one-phase Stefan problem with a small multiplier $\varepsilon$ at the time derivative in the equation on a certain time interval independent of $\varepsilon$ for $\varepsilon\in (0,\varepsilon_0)$. We compare the solution to the Stefan problem with the solution to the Hele-Show problem which describes the process of melting materials with zero specific heat $\varepsilon$ and can be considered as a quasistationary approximation for the Stefan problem. We show that the difference of the solutions has order $\mathcal O(\varepsilon)+\mathcal O(e^{-\frac{ct}{\varepsilon}})$. This provides justification of the quasistationary approximation.
@article{ZNSL_2007_348_a7,
     author = {V. A. Solonnikov and E. V. Frolova},
     title = {On the justification of the quasistationary approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--253},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/}
}
TY  - JOUR
AU  - V. A. Solonnikov
AU  - E. V. Frolova
TI  - On the justification of the quasistationary approximation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 209
EP  - 253
VL  - 348
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/
LA  - ru
ID  - ZNSL_2007_348_a7
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%A E. V. Frolova
%T On the justification of the quasistationary approximation
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 209-253
%V 348
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/
%G ru
%F ZNSL_2007_348_a7
V. A. Solonnikov; E. V. Frolova. On the justification of the quasistationary approximation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 209-253. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/