On the justification of the quasistationary approximation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 209-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the unique solvability of the one-phase Stefan problem with a small multiplier $\varepsilon$ at the time derivative in the equation on a certain time interval independent of $\varepsilon$ for $\varepsilon\in (0,\varepsilon_0)$. We compare the solution to the Stefan problem with the solution to the Hele-Show problem which describes the process of melting materials with zero specific heat $\varepsilon$ and can be considered as a quasistationary approximation for the Stefan problem. We show that the difference of the solutions has order $\mathcal O(\varepsilon)+\mathcal O(e^{-\frac{ct}{\varepsilon}})$. This provides justification of the quasistationary approximation.
@article{ZNSL_2007_348_a7,
     author = {V. A. Solonnikov and E. V. Frolova},
     title = {On the justification of the quasistationary approximation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--253},
     year = {2007},
     volume = {348},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/}
}
TY  - JOUR
AU  - V. A. Solonnikov
AU  - E. V. Frolova
TI  - On the justification of the quasistationary approximation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 209
EP  - 253
VL  - 348
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/
LA  - ru
ID  - ZNSL_2007_348_a7
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%A E. V. Frolova
%T On the justification of the quasistationary approximation
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 209-253
%V 348
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/
%G ru
%F ZNSL_2007_348_a7
V. A. Solonnikov; E. V. Frolova. On the justification of the quasistationary approximation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 209-253. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a7/

[1] L. A. Caffarell, “Some aspects of the one-phase Stefan problem”, Indiana Univ. Math. J., 27 (1978), 73–77 | DOI | MR | Zbl

[2] D. Kinderlehrer, L. Nirenberg, “The smoothness of the free boundary in the one-phase Stefan problem”, Comm. Pure Appl. Math., 31 (1978), 257–282 | DOI | MR | Zbl

[3] A. M. Meirmanov, “O klassicheskoi razreshimosti zadachi Stefana”, Dokl. AN SSSR, 249:6 (1979), 1309–1312 | MR | Zbl

[4] E. I. Hanzawa, “Classical solution of the Stefan problem”, Tohoku Math. J., 33 (1981), 297–335 | DOI | MR | Zbl

[5] A. M. Meirmanov, Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR | Zbl

[6] E. V. Radkevich, A. S. Melikulov, Kraevye zadachi so svobodnoi granitsei, FAN, Tashkent, 1988 | MR | Zbl

[7] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Lect. Notes Math., 1812, Springer, 2003, 123–175 | MR | Zbl

[8] J. Escher and G. Somonet, “Classical solutions of multidimentional Hele-Show models”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl

[9] Yi. Fahuai, “Classical solutions of quasi-stationary Stefan problem”, Chin. Ann. Math., 17:2 (1996), 175–186 | MR | Zbl

[10] E. V. Frolova, “Kvazistatsionarnoe priblizhenie dlya zadacha Stefana”, Probl. mat. analiza, 31, 2005, 167–179 | Zbl

[11] G. I. Bizhanova, V. A. Solonnikov, “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii vtorogo poryadka”, Algebra i analiz, 12:6 (2000), 98–139 | MR

[12] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publ., 1996 | MR | Zbl

[13] G. I. Bizhanova, V. A. Solonnikov, “O razreshimosti nachalno-kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka s proizvodnoi po vremeni v granichnom uslovii v vesovom gelderovskom prostranstve funktsii”, Algebra i analiz, 5:1 (1993), 109–142 | MR | Zbl

[14] V. A. Solonnikov, “On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop”, Interfaces and Free Boundaries, 1 (1999), 125–173 | DOI | MR | Zbl

[15] V. A. Solonnikov, E. V. Frolova, “Vesovye otsenki resheniya lineinoi zadachi, svyazannoi s odnofaznoi zadachei Stefana, v sluchae stremleniya k nulyu udelnoi teploemkosti”, Zap. nauchn. semin. POMI, 336, 2006, 239–263 | MR | Zbl

[16] V. A. Solonnikov, A. G. Khachatryan, “Otsenki reshenii parabolicheskikh nachalno-kraevykh zadach v vesovykh gelderovskikh normakh”, Tr. MIAN SSSR, 147, 1980, 147–155 | MR | Zbl

[17] G. I. Bizhanova, “Issledovanie razreshimosti v vesovom gelderovskom prostranstve funktsii mnogomernykh dvukhfaznykh zadach Stefana i nestatsionarnoi filtratsii Florina dlya parabolicheskikh uravnenii vtorogo poryadka”, Zap. nauchn. semin. LOMI, 213, 1994, 14–47

[18] V. S. Belonosov, T. I. Zelenyak, Nelokalnye problemy v teorii kvazilineinykh parabolicheskikh uravnenii, NGU, Novosibirsk, 1975 | MR

[19] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[20] A. V. Ivanov, Issledovanie svoistv obobschennykh reshenii kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka, Kand. dissertatsiya, LGU, 1966

[21] N. V. Krylov, M. V. Safonov, “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR, 44 (1980), 161–175 | MR | Zbl

[22] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, 1977 | MR | Zbl

[23] E. M. Laidis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971, 287 pp. | MR