On the stability of uniformly rotating viscous
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 165-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to justification of the principle of minimum of potential energy in the problem of stability of uniformly rotating viscous incompressible self-gravitating liquid. The capillary forces on the free boundary of the liquid are not taken into account. It is proved that the regime of rigid rotation is stable, if the second variation of the energy functional is positive. The proof is based on the analysis of the evolution free boundary problem for the perturbations of the velocity and the pressure of rotating liquid.
@article{ZNSL_2007_348_a6,
     author = {V. A. Solonnikov},
     title = {On the stability of uniformly rotating viscous},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--208},
     year = {2007},
     volume = {348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a6/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - On the stability of uniformly rotating viscous
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 165
EP  - 208
VL  - 348
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a6/
LA  - en
ID  - ZNSL_2007_348_a6
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T On the stability of uniformly rotating viscous
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 165-208
%V 348
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a6/
%G en
%F ZNSL_2007_348_a6
V. A. Solonnikov. On the stability of uniformly rotating viscous. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 165-208. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a6/

[1] M. Padula, V. A. Solonnikov, “Existence of nonsteady flows of an incompressible viscous drop of fluid in a frame rotating with finite angular velocity”, Elliptic and Parabolic Problems, Proc. of IV European Conference, World Sci., 2002, 180–203 | MR | Zbl

[2] V. A. Solonnikov, “On the stability of axisymmetric equilibrium figures of rotating viscous incompressible liquid”, Algebra Anal., 16:2 (2004), 120–153 | MR | Zbl

[3] V. A. Solonnikov, “On the stability of nonsymmetric equilibrium figures of rotating viscous incompressible liquid”, Interfaces Free Boundaries, 6 (2004), 461–492 | DOI | MR | Zbl

[4] P. Appell, Traité de mécanique rationelle. Fasc. 1. Figures d' équilibre d'une masse liquide homogǹe en rotation, V. 4, Gautier-Villars, Paris, 1932 | Zbl

[5] A. M. Lyapunov, Sobranie tsochinenii, vol. 3, Izdat. Akad. Nauk SSSR, Moscow, 1959

[6] V. A. Solonnikov, “A generalized energy estimate in a problem with a free boundary for a viscous incompressible fluid”, Zap. Nauchn. Semin. POMI, 282, 2001, 216–243 | MR | Zbl

[7] L. N. Slobodeckiĭ, “Generalized S. L. Sobolev spaces and their application to the boundary value problems for partial differential equations”, Leningrad. Gos. Ped. Inst. Učen. Zap., 197 (1958), 54–112 | MR

[8] Y. Hataya, “Decaying solutions of the Navier–Stokes flow without surface tension”, J. Math. Kyoto Univ., submitted

[9] V. A. Solonnikov, “On the linear problem related to the stability of uniformly rotating self-gravitating liquid”, J. Math. Sci., 144:6 (2007), 4671 | DOI | MR | Zbl

[10] V. A. Solonnikov, “On the problem of evolution of self-gravitating isolated liquid mass not subjected to capillary forces”, J. Math. Sci, 122:3 (2004), 3310–3330 | DOI | MR | Zbl

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967

[12] V. A. Solonnikov, “$L_p$-estimates of solutions of initial-boundary value problem for generalized Stokes equations in a bounded domain”, Probl. Mat. Anal., 21 (2000), 211–263 | Zbl

[13] K. K. Golovkin, “On equivalent norms in fractional spaces”, Trudy MIAN, 66, 1962, 364–383 | MR | Zbl

[14] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Nauka, Moscow, 1975 | MR | Zbl

[15] O. V. Besov, “Investigation of a class of functional spaces in connection with imbedding and extension theorems”, Trudy MIAN SSSR, 60, 1961, 42–81 | MR