On the concentration of the point spectrum on the
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 98-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the linearized theory of water-waves, we find out families of submersed or surface-piercing bodies in an infinite three-dimensional channel which depend on the small parameter $\varepsilon>0$ and have the following property: For any positive $d$ and integer $J$, there exists $\varepsilon(d,J)>0$ such that, for $\varepsilon\in(0,\varepsilon(d,J)]$, the segment $[0,d]$ of the continuous spectrum of the problem contains at least $J$ eigenvalues. These eigenvalues are associated with trapped modes, i.e., solutions of the homogeneous problem which decay exponentially at infinity and possess a finite energy.
@article{ZNSL_2007_348_a3,
     author = {S. A. Nazarov},
     title = {On the concentration of the point spectrum on the},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--126},
     year = {2007},
     volume = {348},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - On the concentration of the point spectrum on the
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 98
EP  - 126
VL  - 348
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/
LA  - ru
ID  - ZNSL_2007_348_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T On the concentration of the point spectrum on the
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 98-126
%V 348
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/
%G ru
%F ZNSL_2007_348_a3
S. A. Nazarov. On the concentration of the point spectrum on the. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 98-126. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/

[1] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR

[2] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[3] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[4] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[5] S. A. Nazarov,, “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zhurnal vychisl. matem. i matem. fiz., 48 (2008) (to appear) | MR | Zbl

[6] C. M. Linton, P. McIver, Embedded trapped modes in water waves and acustics, Preprint of Loughborough University, No 06-24, 2004 ; http://www.lboro.ac.uk/departments/ma/research/preprints/papers06/06-24.pdf | MR

[7] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse, 1”, Matem. sbornik, 190:1 (1999), 109–138 | MR | Zbl

[8] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. semin. POMI RAN, 264, 2000, 66–82 | MR | Zbl

[9] S. A. Nazarov, “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | MR | Zbl

[10] S. A. Nazarov, “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zhurnal vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR

[11] S. N. Leora, S. A. Nazarov, A. V. Proskura, “Vyvod predelnykh uravnenii dlya ellipticheskikh kraevykh zadach v tonkikh oblastyakh pri pomoschi EVM”, Zhurnal vychislitelnoi matem. i matem. fiziki, 26:7 (1986), 1032–1048 | MR | Zbl

[12] S. A. Nazarov, “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | MR | Zbl

[13] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001

[14] I. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr.un-ta, L., 1980 | MR

[15] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl

[16] S. A. Nazarov, “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matem. analiza, 25, Nauchn. kniga, Novosibirsk, 2003, 99–188

[17] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. of Applied Mathematics, 70 (2005), 419–458 | DOI | MR | Zbl

[18] D. Gomez, M. Lobo, S. A. Nazarov, E. Perez, “Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues”, J. Math. Pures Appl., 85 (2006), 598–632 | DOI | MR | Zbl

[19] O. A. Oleinik, G. A. Iosifian, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl

[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292

[21] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[22] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[23] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl

[24] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[25] S. A. Nazarov, “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v vesovykh funktsionalnykh prostranstvakh”, Matem. sbornik, 137:2 (1988), 224–241 | MR

[26] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy Sankt-Peterburg. matem. o-va, 5, 1996, 112–183

[27] S. A. Nazarov, “Asimptotika po malomu parametru resheniya ellipticheskoi po Agranovichu–Vishiku kraevoi zadachi v oblasti s konicheskoi tochkoi”, Problemy matem. analiza, 7, izd-vo LGU, L., 1979, 146–167