On the concentration of the point spectrum on the
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 98-126

Voir la notice de l'article provenant de la source Math-Net.Ru

For the linearized theory of water-waves, we find out families of submersed or surface-piercing bodies in an infinite three-dimensional channel which depend on the small parameter $\varepsilon>0$ and have the following property: For any positive $d$ and integer $J$, there exists $\varepsilon(d,J)>0$ such that, for $\varepsilon\in(0,\varepsilon(d,J)]$, the segment $[0,d]$ of the continuous spectrum of the problem contains at least $J$ eigenvalues. These eigenvalues are associated with trapped modes, i.e., solutions of the homogeneous problem which decay exponentially at infinity and possess a finite energy.
@article{ZNSL_2007_348_a3,
     author = {S. A. Nazarov},
     title = {On the concentration of the point spectrum on the},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--126},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - On the concentration of the point spectrum on the
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 98
EP  - 126
VL  - 348
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/
LA  - ru
ID  - ZNSL_2007_348_a3
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T On the concentration of the point spectrum on the
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 98-126
%V 348
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/
%G ru
%F ZNSL_2007_348_a3
S. A. Nazarov. On the concentration of the point spectrum on the. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 98-126. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/