@article{ZNSL_2007_348_a3,
author = {S. A. Nazarov},
title = {On the concentration of the point spectrum on the},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--126},
year = {2007},
volume = {348},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/}
}
S. A. Nazarov. On the concentration of the point spectrum on the. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 98-126. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a3/
[1] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR
[2] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[4] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl
[5] S. A. Nazarov,, “Lovushechnye mody dlya tsilindricheskogo uprugogo volnovoda s dempfiruyuschei prokladkoi”, Zhurnal vychisl. matem. i matem. fiz., 48 (2008) (to appear) | MR | Zbl
[6] C. M. Linton, P. McIver, Embedded trapped modes in water waves and acustics, Preprint of Loughborough University, No 06-24, 2004 ; http://www.lboro.ac.uk/departments/ma/research/preprints/papers06/06-24.pdf | MR
[7] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadachakh rasseyaniya na periodicheskoi granitse, 1”, Matem. sbornik, 190:1 (1999), 109–138 | MR | Zbl
[8] I. V. Kamotskii, S. A. Nazarov, “Rasshirennaya matritsa rasseyaniya i eksponentsialno zatukhayuschie resheniya ellipticheskoi zadachi v tsilindricheskoi oblasti”, Zap. nauchn. semin. POMI RAN, 264, 2000, 66–82 | MR | Zbl
[9] S. A. Nazarov, “Kriterii suschestvovaniya zatukhayuschikh reshenii v zadache o rezonatore s tsilindricheskim volnovodom”, Funktsionalnyi analiz i ego prilozheniya, 40:2 (2006), 20–32 | MR | Zbl
[10] S. A. Nazarov, “Iskusstvennye kraevye usloviya dlya poiska poverkhnostnykh voln v zadache difraktsii na periodicheskoi granitse”, Zhurnal vychisl. matem. i matem. fiz., 46:12 (2006), 2265–2276 | MR
[11] S. N. Leora, S. A. Nazarov, A. V. Proskura, “Vyvod predelnykh uravnenii dlya ellipticheskikh kraevykh zadach v tonkikh oblastyakh pri pomoschi EVM”, Zhurnal vychislitelnoi matem. i matem. fiziki, 26:7 (1986), 1032–1048 | MR | Zbl
[12] S. A. Nazarov, “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | MR | Zbl
[13] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001
[14] I. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr.un-ta, L., 1980 | MR
[15] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl
[16] S. A. Nazarov, “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matem. analiza, 25, Nauchn. kniga, Novosibirsk, 2003, 99–188
[17] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. of Applied Mathematics, 70 (2005), 419–458 | DOI | MR | Zbl
[18] D. Gomez, M. Lobo, S. A. Nazarov, E. Perez, “Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues”, J. Math. Pures Appl., 85 (2006), 598–632 | DOI | MR | Zbl
[19] O. A. Oleinik, G. A. Iosifian, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl
[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[21] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[22] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR
[23] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[24] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[25] S. A. Nazarov, “Samosopryazhennye rasshireniya operatora zadachi Dirikhle v vesovykh funktsionalnykh prostranstvakh”, Matem. sbornik, 137:2 (1988), 224–241 | MR
[26] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy Sankt-Peterburg. matem. o-va, 5, 1996, 112–183
[27] S. A. Nazarov, “Asimptotika po malomu parametru resheniya ellipticheskoi po Agranovichu–Vishiku kraevoi zadachi v oblasti s konicheskoi tochkoi”, Problemy matem. analiza, 7, izd-vo LGU, L., 1979, 146–167