@article{ZNSL_2007_348_a2,
author = {E. Zadrzy\'nska and W. Zaj\k{a}czkowski},
title = {The {Cauchy{\textendash}Dirichlet} problem for the heat equation in {Besov} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--97},
year = {2007},
volume = {348},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/}
}
E. Zadrzyńska; W. Zajączkowski. The Cauchy–Dirichlet problem for the heat equation in Besov spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 40-97. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/
[1] M. S. Agranovich, M. I. Vishik, “Elliptic problems with parameter and parabolic problems of general type”, Usp. Mat. Nauk, 19:3(117) (1964), 53–161 | MR | Zbl
[2] W. Alame, “On the existence of solutions for the nonstationary Stokles system with slip boundary conditions in general Sobolev–Slobodetskii and Besov spaces, regularity and other aspects of the Navier–Stokes equations”, Banach Center Publ., 70 (2005), 21–49 | DOI | MR | Zbl
[3] H. Amann, “Dynamic theory of quasilinear parabolic equations. II: Reaction-diffusion systems”, Diff. Int. Eqs., 3(1) (1990), 13–75 | MR | Zbl
[4] H. Amann, Linear and Quasilinear Parabolic Problems, V. I, Birkhäuser Verlag, 1995 | MR | Zbl
[5] H. Amann, “Elliptic operators with infinite-dimensional state spaces”, J. Evol. Equ., 1 (2001), 143–188 | DOI | MR | Zbl
[6] O. V. Besov, V. P. Il'in, S. M. Nikolskij, Integral representation of functions and theorems of imbedding, Nauka, Moscow, 1975 | Zbl
[7] M. Burnat, W. M. Zajączkowski, “On local motion of a compressible barotropic viscous fluid with the boundary slip condition”, Topol. Meth. Nonlinear Anal., 10 (1997), 195–223 | MR | Zbl
[8] R. Danchin, “Global existence in critical spaces for flows of compressible viscous and heat-conductive gases”, Archive for Rational Mechanics and Analysis, 160 (2001), 1–39 | DOI | MR | Zbl
[9] R. Danchin, “On the uniqueness in critical spaces for compressible Navier–Stokes equations”, Nonlinear Differential Equations Appl., 12:1 (2005), 111–128 | DOI | MR | Zbl
[10] G. Grubb, Functional calculus of pseudodifferential boundary problems, Progress Math., 65, Birkhauser, Boston, MA, 1996 | MR | Zbl
[11] G. Grubb, V. A. Solonnikov, “Solution of parabolic pseudo-differential initial-boundary value problems”, J. Diff. Eqs., 87 (1990), 256–304 | DOI | MR | Zbl
[12] G. Grubb, N. J. Kokholm, “A global calculus of parameter-dependednt pseudodifferential boundary problems in $L_p$ Sobolev spaces”, Acta Math., 171 (1993), 165–229 | DOI | MR | Zbl
[13] G. Grubb, “Parameter-elliptic and parabolic pseudodifferential boundary problems in global $L_p$ Sobolev spaces”, Mathematische Zeitschrift, 218 (1995), 43–90 | DOI | MR | Zbl
[14] G. Grubb, V. A. Solonnikov,, “Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods”, Math. Scand., 69 (1991), 217–290 | MR | Zbl
[15] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, Moscow, 1967
[16] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, V. 1,2, Springer Verlag, 1972
[17] S. M. Nikolskij, Approximation of functions with many variables and theorems of imbedding, Nauka, Moscow, 1977
[18] R. Paley, N. Wiener, Fourier transforms in the complex domain, New York, 1934
[19] V. A. Solonnikov, “A priori estimates for linear parabolic equations of the second order”, Trudy Steklov Mat. Inst., 70, 1964, 133–212 | MR | Zbl
[20] V. A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general type”, Trudy Steklov Mat. Inst., 83, 1965, 3–163 | MR
[21] V. A. Solonnikov, “An initial-boundary value problem for Stokes system that arises in the study of free boundary problem”, Trudy Steklov Mat. Inst., 188, 1990, 150–188 | MR
[22] H. Triebel, Interpolation theory, function spaces, differential operators, North Holland, Amsterdam, 1978 | MR | Zbl
[23] H. Triebel, Theory of function spaces, Akad. Verlagsgesellschaft, Leipzig, 1983 | MR | Zbl
[24] P. Weidemaier, “Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm”, Electr. Res. Announcements of the AMS, 8 (2002), 47–51 | DOI | MR | Zbl
[25] P. Weidemaier, “Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions”, Progress in partial differential equations, V. 2, Pitman Res. Notes Math. Ser., 384, Longman, Harlow, 1998, 189–200 | MR | Zbl
[26] Y. Yamamoto, “Solutions in Besov spaces of a class of abstract parabolic equations of higher order in time”, J. Math. Kyoto Univ., 38:2 (1998), 201–227 | MR | Zbl