The Cauchy--Dirichlet problem for the heat equation in Besov spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 40-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the solvability in anisotropic spaces $B_{p,q}^{{\sigma\over2}\!,\sigma}(\Omega^T)$, $\sigma\in\mathbb R_+$, $p,q\in(1,\infty)$, of the heat equation $u_t-\Delta u=f$ in $\Omega^T\equiv(0,T)\times\Omega$ with the boundary and initial conditions: $u=g$ on $S^T$, $u|_{t=0}=u_0$ in $\Omega$, where $S$ is the boundary of a bounded domain $\Omega\subset\mathbb R^n$.
@article{ZNSL_2007_348_a2,
     author = {E. Zadrzy\'nska and W. Zaj\k{a}czkowski},
     title = {The {Cauchy--Dirichlet} problem for the heat equation in {Besov} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--97},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/}
}
TY  - JOUR
AU  - E. Zadrzyńska
AU  - W. Zajączkowski
TI  - The Cauchy--Dirichlet problem for the heat equation in Besov spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 40
EP  - 97
VL  - 348
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/
LA  - en
ID  - ZNSL_2007_348_a2
ER  - 
%0 Journal Article
%A E. Zadrzyńska
%A W. Zajączkowski
%T The Cauchy--Dirichlet problem for the heat equation in Besov spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 40-97
%V 348
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/
%G en
%F ZNSL_2007_348_a2
E. Zadrzyńska; W. Zajączkowski. The Cauchy--Dirichlet problem for the heat equation in Besov spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 40-97. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/