The Cauchy--Dirichlet problem for the heat equation in Besov spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 40-97
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we study the solvability in anisotropic spaces
$B_{p,q}^{{\sigma\over2}\!,\sigma}(\Omega^T)$, $\sigma\in\mathbb R_+$,
$p,q\in(1,\infty)$, of the heat equation $u_t-\Delta u=f$ in
$\Omega^T\equiv(0,T)\times\Omega$ with the boundary and initial conditions:
$u=g$ on $S^T$, $u|_{t=0}=u_0$ in $\Omega$, where $S$ is the boundary of
a bounded domain $\Omega\subset\mathbb R^n$.
@article{ZNSL_2007_348_a2,
author = {E. Zadrzy\'nska and W. Zaj\k{a}czkowski},
title = {The {Cauchy--Dirichlet} problem for the heat equation in {Besov} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--97},
publisher = {mathdoc},
volume = {348},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/}
}
E. Zadrzyńska; W. Zajączkowski. The Cauchy--Dirichlet problem for the heat equation in Besov spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 40-97. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a2/