Error estimates for obstacle problems Of higher order
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For obstacle problems of higher order involving power growth functionals we prove a posteriori error estimates using methods from duality theory. These estimates can be seen as a reliable measure for the deviation of an approximation from the exact solution being independent of the concrete numerical scheme under consideration.
@article{ZNSL_2007_348_a0,
     author = {M. Bildhauer and M. Fuchs},
     title = {Error estimates for obstacle problems {Of} higher order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     year = {2007},
     volume = {348},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - Error estimates for obstacle problems Of higher order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 18
VL  - 348
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/
LA  - en
ID  - ZNSL_2007_348_a0
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T Error estimates for obstacle problems Of higher order
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-18
%V 348
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/
%G en
%F ZNSL_2007_348_a0
M. Bildhauer; M. Fuchs. Error estimates for obstacle problems Of higher order. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/

[1] R. A. Adams, Sobolev spaces, Academic Press, New York-San Francisco-London, 1975 | MR | Zbl

[2] M. Bildhauer, M. Fuchs, and S. Repin, “A posteriori error estimates for stationary slow flows of power-law fluids”, J. Non-Newtonian Fluid Mech., 142 (2007), 112–122 | DOI | Zbl

[3] M. Bildhauer, M. Fuchs, and S. Repin, “Duality based a posteriori error estimates for higher order variational inequalities with power growth functionals” (to appear)

[4] M. Bildhauer and S. Repin, “Estimates for the deviation from exact solutions of variational problems with power growth functionals”, Zap. Nauch. Semi. POMI, 336, 2006, 5–24 | MR | Zbl

[5] J. A. Clarkson, “Uniformly convex spaces”, Trans. Am. Math. Soc., 40 (1936), 396–414 | DOI | MR

[6] I. Ekeland and R. Temam, Convex analysis and variational problems, Noth-Holland, Amsterdam, 1976 | MR

[7] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Math. Wiss., 224, Springer, Berlin–Heidelberg–New York, 1998

[8] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren der Math. Wiss., 130, Springer, Berlin–Heidelberg–New York, 1966 | MR | Zbl

[9] P. P. Mosolov and V. P. Mjasnikov, Mechanics of rigid plastic media, Nauka, Moscow, 1981 | MR | Zbl

[10] P. Neittaanmäki and S. Repin, Reliable methods for computer simulation: error control and a posteriori estimates, Elsevier, New York, 2004 | MR | Zbl

[11] S. Repin, “Estimates of deviations from exact solutions of elliptic variational inequalities”, J. Math. Sci., 115 (2003), 2811–2819 | DOI | MR