Error estimates for obstacle problems Of higher order
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 5-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For obstacle problems of higher order involving power growth functionals we prove a posteriori error estimates using 
methods from duality theory. These estimates can be seen as a reliable measure for the deviation of an approximation 
from the exact solution 
being independent of the concrete numerical scheme under consideration.
			
            
            
            
          
        
      @article{ZNSL_2007_348_a0,
     author = {M. Bildhauer and M. Fuchs},
     title = {Error estimates for obstacle problems {Of} higher order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/}
}
                      
                      
                    M. Bildhauer; M. Fuchs. Error estimates for obstacle problems Of higher order. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/