Error estimates for obstacle problems Of higher order
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 5-18

Voir la notice de l'article provenant de la source Math-Net.Ru

For obstacle problems of higher order involving power growth functionals we prove a posteriori error estimates using methods from duality theory. These estimates can be seen as a reliable measure for the deviation of an approximation from the exact solution being independent of the concrete numerical scheme under consideration.
@article{ZNSL_2007_348_a0,
     author = {M. Bildhauer and M. Fuchs},
     title = {Error estimates for obstacle problems {Of} higher order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - Error estimates for obstacle problems Of higher order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 18
VL  - 348
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/
LA  - en
ID  - ZNSL_2007_348_a0
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T Error estimates for obstacle problems Of higher order
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-18
%V 348
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/
%G en
%F ZNSL_2007_348_a0
M. Bildhauer; M. Fuchs. Error estimates for obstacle problems Of higher order. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a0/