Quantum algebras with representation ring of $\operatorname{sl}(2)$ type
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 167-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A reducible representation of the Temperley–Lieb algebra is constructed on tensor product of $n$-dimensional spaces. One obtains as a centraliser of this action a quantum algebra (a quasitriangular Hopf algebra) with representation ring equivalent to the representation ring of the $\operatorname{sl}(2)$ Lie algebra.
@article{ZNSL_2007_347_a9,
     author = {P. P. Kulish and N. Manoilovich},
     title = {Quantum algebras with representation ring of $\operatorname{sl}(2)$ type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--177},
     year = {2007},
     volume = {347},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a9/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - N. Manoilovich
TI  - Quantum algebras with representation ring of $\operatorname{sl}(2)$ type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 167
EP  - 177
VL  - 347
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a9/
LA  - ru
ID  - ZNSL_2007_347_a9
ER  - 
%0 Journal Article
%A P. P. Kulish
%A N. Manoilovich
%T Quantum algebras with representation ring of $\operatorname{sl}(2)$ type
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 167-177
%V 347
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a9/
%G ru
%F ZNSL_2007_347_a9
P. P. Kulish; N. Manoilovich. Quantum algebras with representation ring of $\operatorname{sl}(2)$ type. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 167-177. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a9/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi”, TMF, 40:2 (1979), 194–220 | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$-model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR

[3] L. D. Faddeev, “How Bethe ansatz works for integrable model”, Quantum Symmetries/Symetries Quantiques, Proc. Les Houches summer school, LXIV, eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, 1998, 149–211 ; arXiv: /hep-th/9605187 | MR

[4] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Phys., 151, 1982, 61–119 | MR | Zbl

[5] P. P. Kulish, N. Yu. Reshetikhin, “Kvantovaya lineinaya zadacha dlya uravneniya sinus-Gordon i vysshie predstavleniya”, Zap. nauchn. semin. LOMI, 101, 1981, 101–110 | MR

[6] E. K. Sklyanin, “Ob algebre porozhdennoi kvadratichnymi sootnosheniyami”, UMN, 40:2 (1985), 263–270

[7] V. G. Drinfeld, “Quantum groups”, Proc. Intern. Congress Math. (Berkeley, CA), AMS, Providence, RI, 1987, 798–820 | MR

[8] M. Jimbo, “A $q$-difference analogue of $U(gl(N+1))$ and the Yang-Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 ; M. Jimbo, “$A_q$-analogue of $U_q(\text{gl}(N+1))$. Hecke algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–251 | DOI | MR | Zbl | DOI | MR

[9] L. A. Takhtadzhyan, L. D. Faddeev, “Spektr i rasseyanie vozbuzhdenii v odnomernom izotropnom magnetike Geizenberga”, Zap. nauchn. semin. LOMI, 109, 1981, 134–178 ; J. Sov. Math., 24 (1984), 241–271 | MR | Zbl | DOI

[10] V. Pasquier, H. Saleur, “Common structures between finite systems and conformal field theories through quantum groups”, Nucl. Phys. B, 330 (1990), 523–556 | DOI | MR

[11] P. P. Kulish, “On spin systems related to Temperley–Lieb algebra”, J. Phys. A: Math. Gen., 36 (2003), L489–L493 | DOI | MR | Zbl

[12] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982 | MR | Zbl

[13] P. P. Martin, Potts models and related problems in statistical mechanics, World Scientific, 1991 | MR

[14] M. T. Batchelor, A. Kuniba, “Temperley–Lieb lattice models arising from quantum groups”, J. Phys. A: Math. Gen., 24 (1991), 2599–2614 | DOI | MR | Zbl

[15] R. Koberle, A. Lima-Santos, “Exact solutions for A-D Temperley–Lieb models”, J. Phys. A: Math. Gen., 29 (1996), 519–531 | DOI | MR

[16] J. de Gier, A. Nichols, P. Pyatov, V. Rittenbert, “Magic in spectra of the $XXZ$ quantum chain with boundaries at Delta 0 and Delta $-1/2$”, Nuclear Phys. B, 729 (2005), 387–418 | DOI | MR | Zbl

[17] A. Doikou, “Asymmetric twin representation: the transfer matrix symmetry”, Symm. Integr. Geom.: Math. Applic. (SIGMA), 3 (2007), Paper 009, 19 pp. | DOI | MR | Zbl

[18] D. I. Gurevich, “Algebraicheskie aspekty uravneniya Yanga–Bakstera”, Algebra i analiz, 2 (1990), 119–148 ; Leningrad Math. J., 2 (1991), 801–828 ; M. Dubois-Violette, G. Launer, “The quantum group of a non-degenerate bilinear form”, Phys. Lett. B, 245 (1990), 175–177 | MR | Zbl | Zbl | DOI | MR | Zbl

[19] J. Bichon, “The representation category of the quantum group of a non-degenerate bilinear form”, Comm. Algebra, 31:10 (2003), 4831–4851 ; arXiv: /math.QA/0111114 | DOI | MR | Zbl

[20] P. Etingof, V. Ostrik, “Module categories over representations of $SL_q(2)$ and graphs”, Math. Res. Lett., 11:1 (2004), 103–114 ; arXiv: /math.QA/0302130 | MR | Zbl

[21] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, 1994 | MR | Zbl

[22] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1 (1989), 178–206 ; Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl

[23] A. P. Isaev, Quantum groups and Yang–Baxter equation, Preprint MPIM 04-132, 2004