@article{ZNSL_2007_347_a8,
author = {S. \`E. Derkachev},
title = {Factorization of the {R-matrix} and {Baxter's} {Q-operator}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {144--166},
year = {2007},
volume = {347},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a8/}
}
S. È. Derkachev. Factorization of the R-matrix and Baxter's Q-operator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 144-166. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a8/
[1] P. P. Kulish and E. K. Sklyanin, “On the solutions of the Yang–Baxter equation”, Zap.Nauchn.Sem. LOMI, 95, 1980, 129 | MR
[2] M. Jimbo, “Introduction to the Yang–Baxter equation”, Int. J. Mod. Phys A, 4 (1983), 3759 ; Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, ed. M. Jimbo, World Scientific, Singapore, 1990 | DOI | MR | MR | Zbl
[3] V. G. Drinfeld, “Hopf algebras and Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254; V. G. Drinfeld, “Quantum Groups”, Proc. Int. Congress Math. (Berkeley, 1986), AMS, Providence, RI, 1987, 798 | MR
[4] P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61 ; L. D. Faddeev, ow Algebraic Bethe Anstz works for integrable model, ; E. K. Sklyanin, “Quantum Inverse Scattering Method Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97 ; arXiv: /hep-th/9605187arXiv: /hep-th/9211111 | MR | Zbl | MR
[5] P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin,, “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[6] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982, Ch. 9–10 | MR | Zbl
[7] E. K. Sklyanin, private communication
[8] E. K. Sklyanin, “Backlund transformations and Baxter's Q-operator”, Integrable systems: from classical to quantum (Montreal, QC, 1999), CRM Proc. Lecture Notes, 26, Amer. Math. Soc., Providence, RI, 2000, 227–250 ; arXiv: /nlin.SI/0009009 | MR | Zbl
[9] S. E. Derkachov, “Factorization of the R-matrix, I”, Zap. nauchn. sem. POMI, 335, 134 | MR | Zbl
[10] S. E. Derkachov, “Baxter's Q-operator for the homogeneous XXX spin chain”, J. Phys. A: Math. Gen., 32 (1999), 5299–5316 ; arXiv: /solv-int/9902015 | DOI | MR | Zbl
[11] S. E. Derkachov, G. P. Korchemsky, and A. N. Manashov, “Separation of variables for the quantum SL(2,R) spin chain”, JHEP, 07 (2003), 047 ; arXiv: /hep-th/0210216 | DOI | MR
[12] V. Pasquier and M. Gaudin, “The periodic Toda chain and a matrix generalization of the Bessel function recursion relations”, J. Phys. A:Math. Gen., 25 (1992), 5243–5252 | DOI | MR | Zbl
[13] A. Yu. Volkov, “Quantum lattige KdV equation”, Lett. Math. Phys., 39 (1997), 313–329 ; arXiv: /hep-th/9509024 | DOI | MR | Zbl
[14] V. Bazhanov, S. Lukyanov and A. Zamolodchikov, “Integrable structure of Conformal Field Theory. II: Q-operator and $DDV$ equation”, Commun. Math. Phys., 190 (1997), 247–278 ; arXiv: /hep-th/9604044 | DOI | MR | Zbl
[15] A. Antonov and B. Feigin, “Quantum group representation and Baxter equation”, Phys. Lett. B, 392 (1997), 115–122 ; arXiv: /hep-th/9603105 | DOI | MR
[16] V. B. Kuznetsov, M. Salerno and E. K. Sklyanin, “Quantum Backlund transforation for the integrable DST model”, J. Phys. A, 33 (2000), 171–189 ; arXiv: /solv-int/9908002 | DOI | MR | Zbl
[17] G. P. Pronko, “On the Baxter's $Q$-operator for the $XXX$ spin chain”, Commun. Math. Phys., 212 (2000), 687–701 ; ; A. E. Kovalsky and G. P. Pronko, Baxter Q-operators for integrable DST chain, ; A. E. Kovalsky and G. P. Pronko, Baxters Q-operators for the simplest q-deformed model, arXiv: /hep-th/9908179arXiv: /nlin.SI/0203030arXiv: /nlin.SI/0307040 | DOI | MR | Zbl
[18] M. Rossi and R. Weston, “A Generalized Q-operator for $U_q(\hat{sl_2})$ Vertex Models”, J. Phys. A, 35 (2002), 10015–10032 ; arXiv: /math-ph/0207004 | DOI | MR | Zbl
[19] A. Zabrodin, “Commuting difference operators with elliptic coefficients from Baxter's vacuum vectors”, J. Phys. A, 33 (2000), 3825 ; arXiv: /math.QA/9912218 | DOI | MR | Zbl
[20] V. V. Bazhanov and Yu. G. Stroganov, “Chiral Potts model as a descendant of the six vertex model”, J. Stat. Phys., 51 (1990), 799–817 | DOI | MR
[21] V. O. Tarasov, “Cyclic monodromy matrices for $s\ell(n)$ trogonometric R-matrices”, Commun. Math. Phys., 158 (1993), 459–483 | DOI | MR | Zbl
[22] A. A. Belavin, A. V. Odessky and R. A. Usmanov, New relations in the algebra of the Baxter Q-operators, arXiv: /hep-th/0110126