@article{ZNSL_2007_347_a5,
author = {P. A. Valinevich and S. \`E. Derkachev and D. R. Karakhanyan and R. Kirshner},
title = {Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--106},
year = {2007},
volume = {347},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/}
}
TY - JOUR AU - P. A. Valinevich AU - S. È. Derkachev AU - D. R. Karakhanyan AU - R. Kirshner TI - Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 88 EP - 106 VL - 347 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/ LA - ru ID - ZNSL_2007_347_a5 ER -
%0 Journal Article %A P. A. Valinevich %A S. È. Derkachev %A D. R. Karakhanyan %A R. Kirshner %T Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$ %J Zapiski Nauchnykh Seminarov POMI %D 2007 %P 88-106 %V 347 %U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/ %G ru %F ZNSL_2007_347_a5
P. A. Valinevich; S. È. Derkachev; D. R. Karakhanyan; R. Kirshner. Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 88-106. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/
[1] L. I. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i ${\mathbf X\mathbf Y\mathbf Z}$-model Geizenberga”, Uspekhi mat. nauk, 34:5 (1979), 13–63 | MR
[2] L. D. Faddeev, How algebraic Bethe anstz works for integrable model, arXiv: /hep-th/9605187 | MR
[3] P. P. Kulish, E. K. Sklyanin, “On the solutions of the Yang–Baxter equation”, Zap. Nauchn. Semin. LOMI, 95, 1980, 129 ; “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61 | MR | MR | Zbl
[4] M. Jimbo, “Introduction to the Yang–Baxter equation”, Int. J. Mod. Phys. A, 4 (1983), 3759 ; Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, ed. M. Jimbo, World Scientific, Singapore, 1990 | DOI | MR | MR | Zbl
[5] M. Jimbo, “A $q$-analogue of $U(gl(n+1))$, Hecke Algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl
[6] V. G. Drinfeld, “Hopf algebras and Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254 ; “Quantum Groups”, Proc. Int. Congress Math. (Berkeley, 1986), AMS, Providence, RI, 1987, 798 | MR | MR
[7] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[8] S. Derkachov, A. Manashov, “$\mathcal R$-matrix and baxter $\mathcal Q$-operators for the noncompact $SL(N,\mathbb C)$ invariant spin chain”, SIGMA, 2 (2006), Paper 084, 20 pp. ; arXiv: /nlin.si/0612003 | DOI | MR | Zbl
[9] S. Derkachov, A. Manashov, “Baxter operators for the quantum sl(3) invariant spin chain”, J. Phys. A, 39 (2006), 13171 ; arXiv: /nlin.si/0604018 | DOI | MR | Zbl
[10] S. Derkachov, D. Karakhanyan, R. Kirschner, “Yang–Baxter R-operators and parameter permutations”, Nucl. Phys. B, 785 (2007), 263–285 ; arXiv: /hep-th/0703076 | DOI | MR | Zbl
[11] A. Klimyk, K. Schmudgen, Quantum groups and their representations, Text and Monographs in Physics, Springer, 1997 | MR
[12] L. C. Biedenharn, M. A. Lohe, Quantum Group Symmetry and q-Tensor Algebras, World Scientific, 1995 ; Comm Math. Phys., 146 (1992), 483–504 | MR | DOI | MR | Zbl
[13] L. D. Faddeev, R. M. Kashaev, “Quantum Dilogarithm”, Mod. Phys. Lett. A, 9 (1994), 427 ; A. N. Kirillov, “Dilogarithm identities”, Progr. Theor. Phys. Suppl., 118 (1995), 61–142 ; ; A. Yu. Volkov, Noncommutative Hypergeometry, arXiv: /hep-th/9408113arXiv: /math.QA/0312084 | DOI | MR | Zbl | DOI | MR | Zbl | MR