Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 88-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Yang–Baxter operator is obtained in terms a product of operators permuting representation parameters in the Lax operators. The construction relies on a factorization of the Lax operator in triangular matrices.
@article{ZNSL_2007_347_a5,
     author = {P. A. Valinevich and S. \`E. Derkachev and D. R. Karakhanyan and R. Kirshner},
     title = {Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--106},
     year = {2007},
     volume = {347},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/}
}
TY  - JOUR
AU  - P. A. Valinevich
AU  - S. È. Derkachev
AU  - D. R. Karakhanyan
AU  - R. Kirshner
TI  - Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 88
EP  - 106
VL  - 347
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/
LA  - ru
ID  - ZNSL_2007_347_a5
ER  - 
%0 Journal Article
%A P. A. Valinevich
%A S. È. Derkachev
%A D. R. Karakhanyan
%A R. Kirshner
%T Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 88-106
%V 347
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/
%G ru
%F ZNSL_2007_347_a5
P. A. Valinevich; S. È. Derkachev; D. R. Karakhanyan; R. Kirshner. Factorization of the $\mathcal R$-matrix for the algebra $U_q(s\ell_3)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 88-106. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a5/

[1] L. I. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i ${\mathbf X\mathbf Y\mathbf Z}$-model Geizenberga”, Uspekhi mat. nauk, 34:5 (1979), 13–63 | MR

[2] L. D. Faddeev, How algebraic Bethe anstz works for integrable model, arXiv: /hep-th/9605187 | MR

[3] P. P. Kulish, E. K. Sklyanin, “On the solutions of the Yang–Baxter equation”, Zap. Nauchn. Semin. LOMI, 95, 1980, 129 ; “Quantum spectral transform method. Recent developments”, Lect. Notes in Physics, 151, 1982, 61 | MR | MR | Zbl

[4] M. Jimbo, “Introduction to the Yang–Baxter equation”, Int. J. Mod. Phys. A, 4 (1983), 3759 ; Yang–Baxter equation in integrable systems, Adv. Ser. Math. Phys., 10, ed. M. Jimbo, World Scientific, Singapore, 1990 | DOI | MR | MR | Zbl

[5] M. Jimbo, “A $q$-analogue of $U(gl(n+1))$, Hecke Algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl

[6] V. G. Drinfeld, “Hopf algebras and Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254 ; “Quantum Groups”, Proc. Int. Congress Math. (Berkeley, 1986), AMS, Providence, RI, 1987, 798 | MR | MR

[7] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[8] S. Derkachov, A. Manashov, “$\mathcal R$-matrix and baxter $\mathcal Q$-operators for the noncompact $SL(N,\mathbb C)$ invariant spin chain”, SIGMA, 2 (2006), Paper 084, 20 pp. ; arXiv: /nlin.si/0612003 | DOI | MR | Zbl

[9] S. Derkachov, A. Manashov, “Baxter operators for the quantum sl(3) invariant spin chain”, J. Phys. A, 39 (2006), 13171 ; arXiv: /nlin.si/0604018 | DOI | MR | Zbl

[10] S. Derkachov, D. Karakhanyan, R. Kirschner, “Yang–Baxter R-operators and parameter permutations”, Nucl. Phys. B, 785 (2007), 263–285 ; arXiv: /hep-th/0703076 | DOI | MR | Zbl

[11] A. Klimyk, K. Schmudgen, Quantum groups and their representations, Text and Monographs in Physics, Springer, 1997 | MR

[12] L. C. Biedenharn, M. A. Lohe, Quantum Group Symmetry and q-Tensor Algebras, World Scientific, 1995 ; Comm Math. Phys., 146 (1992), 483–504 | MR | DOI | MR | Zbl

[13] L. D. Faddeev, R. M. Kashaev, “Quantum Dilogarithm”, Mod. Phys. Lett. A, 9 (1994), 427 ; A. N. Kirillov, “Dilogarithm identities”, Progr. Theor. Phys. Suppl., 118 (1995), 61–142 ; ; A. Yu. Volkov, Noncommutative Hypergeometry, arXiv: /hep-th/9408113arXiv: /math.QA/0312084 | DOI | MR | Zbl | DOI | MR | Zbl | MR