@article{ZNSL_2007_347_a4,
author = {A. G. Bytsko and I. E. Shenderovich},
title = {On string solutions of {Bethe} equations in $\mathcal{N}=4$ supersymmetric {Yang{\textendash}Mills} theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {75--87},
year = {2007},
volume = {347},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/}
}
TY - JOUR
AU - A. G. Bytsko
AU - I. E. Shenderovich
TI - On string solutions of Bethe equations in $\mathcal{N}=4$ supersymmetric Yang–Mills theory
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2007
SP - 75
EP - 87
VL - 347
UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/
LA - ru
ID - ZNSL_2007_347_a4
ER -
A. G. Bytsko; I. E. Shenderovich. On string solutions of Bethe equations in $\mathcal{N}=4$ supersymmetric Yang–Mills theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 75-87. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/
[1] L. N. Lipatov, High energy asymptotics of multi-color QCD and exactly solvable lattice models, arXiv: /hep–th/9311037
[2] L. D. Faddeev, G. P. Korchemsky,, Phys. Lett. B, 342 (1995), 311–322 | DOI | MR
[3] V. M. Braun, S. E. Derkachov, A. N. Manashov, “Integrability of three particle evolution equations in QCD”, Phys. Rev. Lett., 81 (1998), 2020–2023 | DOI
[4] J. A. Minahan, K. Zarembo, “The Bethe ansatz for $\mathcal{N}=4$ super Yang–Mills”, JHEP, 0303 (2003), 013 | DOI | MR
[5] L. A. Takhtadzhyan, L. D. Faddeev, “Spektr i rasseyanie vozbuzhdenii v odnomernom izotropnom magnetike Geizenberga”, Zap. nauchn. semin. LOMI, 109, 1981, 134–178 | MR | Zbl
[6] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model”, Symétries quantiques (Les Houches, 1995), North–Holland, Amsterdam, 1998, 149–219 ; arXiv: /hep-th/9605187 | MR | Zbl
[7] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl
[8] N. Beisert, V. Dippel, M. Staudacher, “A novel long range spin chain and planar $\mathcal{N}=4$ super Yang–Mills”, JHEP, 0407 (2004), 075 | DOI | MR
[9] K. Zarembo, “Antiferromagnetic operators in $\mathcal{N}=4$ supersymmetric Yang–Mills theory”, Phys. Lett. B, 634 (2006), 552–556 | DOI | MR
[10] A. Rej, D. Serban, M. Staudacher, “Planar $\mathcal{N}=4$ gauge theory and the Hubbard model”, JHEP, 0603 (2006), 018 | DOI | MR
[11] L. A. Takhtajan, “The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins”, Phys. Lett. A, 87 (1981, 1982), 479–482 | DOI | MR
[12] H. M. Babujian, “Exact solution on the one-dimensional isotropic Heisenberg chain with arbitrary spin $S$”, Phys. Lett. A, 90 (1982), 479–482 | DOI
[13] H. J. de Vega, L. Mezincescu, R. I. Nepomechie, “Thermodynamics of integrable chains with alternating spins”, Phys. Rev. B, 49 (1994), 13223–13226 | DOI
[14] A. G. Bytsko, A. Doikou, “Thermodynamics and conformal properties of XXZ chains with alternating spins”, J. Phys. A, 37 (2004), 4465–4492 | DOI | MR | Zbl