On string solutions of Bethe equations in $\mathcal{N}=4$ supersymmetric Yang–Mills theory
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 75-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Bethe equations, arising in the description of the spectrum of the dilatation operator for the $su(2)$ sector of the $\mathcal{N}=4$ supersymmetric Yang–Mills theory, are considered in the antiferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit the roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length $(2n+1)$ is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as $n$ grows. It is observed that nonanalyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the antiferromagnetic vacuum is formed of either strings of length 1 or strings of length 2 depending on behaviour of the exponential corrections to string solutions in the thermodynamic limit.
@article{ZNSL_2007_347_a4,
     author = {A. G. Bytsko and I. E. Shenderovich},
     title = {On string solutions of {Bethe} equations in $\mathcal{N}=4$ supersymmetric {Yang{\textendash}Mills} theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--87},
     year = {2007},
     volume = {347},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/}
}
TY  - JOUR
AU  - A. G. Bytsko
AU  - I. E. Shenderovich
TI  - On string solutions of Bethe equations in $\mathcal{N}=4$ supersymmetric Yang–Mills theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 75
EP  - 87
VL  - 347
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/
LA  - ru
ID  - ZNSL_2007_347_a4
ER  - 
%0 Journal Article
%A A. G. Bytsko
%A I. E. Shenderovich
%T On string solutions of Bethe equations in $\mathcal{N}=4$ supersymmetric Yang–Mills theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 75-87
%V 347
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/
%G ru
%F ZNSL_2007_347_a4
A. G. Bytsko; I. E. Shenderovich. On string solutions of Bethe equations in $\mathcal{N}=4$ supersymmetric Yang–Mills theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 75-87. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a4/

[1] L. N. Lipatov, High energy asymptotics of multi-color QCD and exactly solvable lattice models, arXiv: /hep–th/9311037

[2] L. D. Faddeev, G. P. Korchemsky,, Phys. Lett. B, 342 (1995), 311–322 | DOI | MR

[3] V. M. Braun, S. E. Derkachov, A. N. Manashov, “Integrability of three particle evolution equations in QCD”, Phys. Rev. Lett., 81 (1998), 2020–2023 | DOI

[4] J. A. Minahan, K. Zarembo, “The Bethe ansatz for $\mathcal{N}=4$ super Yang–Mills”, JHEP, 0303 (2003), 013 | DOI | MR

[5] L. A. Takhtadzhyan, L. D. Faddeev, “Spektr i rasseyanie vozbuzhdenii v odnomernom izotropnom magnetike Geizenberga”, Zap. nauchn. semin. LOMI, 109, 1981, 134–178 | MR | Zbl

[6] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model”, Symétries quantiques (Les Houches, 1995), North–Holland, Amsterdam, 1998, 149–219 ; arXiv: /hep-th/9605187 | MR | Zbl

[7] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[8] N. Beisert, V. Dippel, M. Staudacher, “A novel long range spin chain and planar $\mathcal{N}=4$ super Yang–Mills”, JHEP, 0407 (2004), 075 | DOI | MR

[9] K. Zarembo, “Antiferromagnetic operators in $\mathcal{N}=4$ supersymmetric Yang–Mills theory”, Phys. Lett. B, 634 (2006), 552–556 | DOI | MR

[10] A. Rej, D. Serban, M. Staudacher, “Planar $\mathcal{N}=4$ gauge theory and the Hubbard model”, JHEP, 0603 (2006), 018 | DOI | MR

[11] L. A. Takhtajan, “The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins”, Phys. Lett. A, 87 (1981, 1982), 479–482 | DOI | MR

[12] H. M. Babujian, “Exact solution on the one-dimensional isotropic Heisenberg chain with arbitrary spin $S$”, Phys. Lett. A, 90 (1982), 479–482 | DOI

[13] H. J. de Vega, L. Mezincescu, R. I. Nepomechie, “Thermodynamics of integrable chains with alternating spins”, Phys. Rev. B, 49 (1994), 13223–13226 | DOI

[14] A. G. Bytsko, A. Doikou, “Thermodynamics and conformal properties of XXZ chains with alternating spins”, J. Phys. A, 37 (2004), 4465–4492 | DOI | MR | Zbl