On the calculation of the asymptotics
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 56-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The quantum field-theoretical model, which describes spatially non-homogeneous one-dimensional repulsive Bose gas in an external harmonic potential is considered. The two-point correlation function is calculated in the framework of the functional integration. The corresponding functional integrals are estimated by means of the stationary phase approximation. The asymptotical estimates are obtained in the limit when the temperature is going to zero while the volume occupied by the quasi-condensate is increased. The power-law behavior is found for the correlation function in this limit. It is demonstrated that the power-law behavior is governed by the critical exponent dependent on the spatial arguments.
@article{ZNSL_2007_347_a3,
     author = {N. M. Bogolyubov and K. L. Malyshev},
     title = {On the calculation of the asymptotics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--74},
     year = {2007},
     volume = {347},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a3/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - K. L. Malyshev
TI  - On the calculation of the asymptotics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 56
EP  - 74
VL  - 347
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a3/
LA  - ru
ID  - ZNSL_2007_347_a3
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A K. L. Malyshev
%T On the calculation of the asymptotics
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 56-74
%V 347
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a3/
%G ru
%F ZNSL_2007_347_a3
N. M. Bogolyubov; K. L. Malyshev. On the calculation of the asymptotics. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 56-74. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a3/

[1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Rev. Mod. Phys., 71 (1999), 463 | DOI

[2] C. J. Pethic, H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2002

[3] T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, T. Esslinger, Science, 315 (2007), 1556 | DOI

[4] D. M. Gangardt, G. V. Shlyapnikov, Phys. Rev. Lett., 90 (2003), 010401 | DOI

[5] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, G. V. Shlyapnikov, Phys. Rev. A, 71 (2005), 053615 | DOI

[6] C. Gils, L. Pollet, A. Vernier, F. Herbert, G. G. Batrouni, M. Troyer, Quantum Monte Carlo study of a 1D phase-fluctuating condensate, arXiv: /cond-mat/0701441

[7] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[8] N. M. Bogoliubov, R. K. Bullough, V. S. Kapitonov, C. Malyshev, J. Timonen, Europhys. Lett., 55 (2001), 755 | DOI

[9] N. M. Bogoliubov, C. Malyshev, R. K. Bullough, J. Timonen, Phys. Rev. A, 69 (2004), 023619 | DOI

[10] N. M. Bogolyubov, K. Malyshev, Algebra i Analiz, 17 (2005), 84 | MR

[11] V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Mathematical Physics and Applied Mathematics, 8, D. Reidel, Dordrecht, etc., 1983 | MR | Zbl

[12] L. S. Schulman, “Techniques and Applications of Path Integration”, J. Wiley $\$ Sons, 1981, New York, etc. | MR

[13] V. N. Popov, Functional Integrals and Collective Excitations, Cambridge University Press, Cambridge, 1987, 1990 | MR

[14] V. N. Popov, V. S. Yarunin, Collective Effects in Quantum Statistics of Radiation and Matter, Kluwer, Dordrecht, etc., 1988

[15] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, Singapore, etc., 1990, 1995, 2004 | MR | Zbl

[16] V. N. Popov, Zap. nauchn. semin. POMI, 150, 1986, 87

[17] C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York, 1980 | MR

[18] M. Naraschewski, D. M. Stamper-Kurn, Phys. Rev. A, 58 (1998), 2423 | DOI

[19] S. Stringari, Phys. Rev. A, 58 (1998), 2385 | DOI

[20] V. N. Popov, Teor. Mat. Fiz., 11 (1972), 354

[21] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953 | MR

[22] E. Elizalde, A. Romeo, Rev. Math. Phys., 1 (1989), 113 | DOI | MR | Zbl

[23] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer, New York, etc., 1997 | MR

[24] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press, Cambridge, 1931