@article{ZNSL_2007_347_a2,
author = {N. M. Bogolyubov},
title = {Four-vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--55},
year = {2007},
volume = {347},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a2/}
}
N. M. Bogolyubov. Four-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 34-55. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a2/
[1] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR
[2] E. H. Lieb, F. Y. Wu, “Two-dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, 1, eds. by C. Domb and M. S. Green, Academic Press, London, 1972, 322
[3] W. Li, H. Park, and M. Widom, “Finite-size scaling amplitudes in a random tiling model”, J. Phys. A, 23 (1990), L573 | DOI | MR
[4] W. Li and H. Park, “Logarithmic singularity in the surface free energy near commensurate-incommensurate transitions”, J. Phys. A, 24 (1991), 257 | DOI
[5] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391 | DOI | MR | Zbl
[6] V. Korepin and P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053 | DOI | MR | Zbl
[7] N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525 | DOI | MR | Zbl
[8] D. Allison and N. Reshetikhin, “Numerical study of the 6-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1847 | MR | Zbl
[9] O. Syljuåsen and M. Zvonarev, “Directed-loop monte carlo simulations of vertex models”, Phys. Rev. E, 70 (2004), 016118 | DOI
[10] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139 | DOI | MR | Zbl
[11] F. Colomo and A. G. Pronko, “Square ice, alternating sign matrices, and classical orthogonal polynomials”, J. Stat. Mech. JSTAT, 2005, P01005 | DOI | MR | Zbl
[12] P. L. Ferrari and H. Spohn, Domino tilings and the six-vertex model at its free fermion, arXiv: /cond-mat/0605406
[13] L. D. Faddeev, “Quantum inverse scattering method”, Sov. Sci. Sect. C, Math. Phys. Rev., 1 (1980), 107 | Zbl
[14] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[15] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[16] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[17] G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[18] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. Anal. Pril., 30:2 (1996), 19 | MR | Zbl
[19] A. M. Vershik, S. Kerov, “Asimptotika mer Plansherelya simmetricheskikh grupp i predelnaya forma diagramm Yunga”, Dokl. Akad. Nauk SSSR, 233 (1977), 1024 | MR | Zbl
[20] A. Okounkov and N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. American Math. Soc., 16 (2003), 58 | MR
[21] R. Rajesh and D. Dhar, “An exactly solvable anisotropic directed percolation model in three dimensions”, Phys. Rev. Lett., 81 (1998), 1646 | DOI
[22] J. W. Essam and A. J. Guttmann, “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E, 52 (1995), 5849 | DOI | MR
[23] A. J. Guttmann, A. L. Owczarec, and X. G. Viennot, “Vicious walkers and Young tableaux. I: Without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl
[24] C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II: With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl
[25] N. M. Bogolyubov, “20 tsepochka Geizenberga i sluchainye bluzhdaniya”, Zap. Nauchn. Semin. POMI, 325, 2005, 13 | Zbl
[26] N. M. Bogolyubov, “Integriruemye modeli dlya zlovrednykh i druzhestvennykh peshekhodov”, Zap. Nauchn. Semin. POMI, 335, 2006, 59 | Zbl
[27] A. Okounkov, N. Reshetikhin, and C. Vafa, Quantum Calabi-Yau and classical crystals, arXiv: /hep-th/0309208 | MR
[28] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415 | DOI | MR | Zbl
[29] N. V. Tsilevich, “Kvantovyi metod obratnoi zadachi dlya $q$-bozonnoi modeli i simmetricheskie funktsii”, Funkts. Anal. i Pril., 40 (2006), 53 | MR | Zbl
[30] K. Shigechi and M. Uchiyama, “Boxed skew plane partition and integrable phase model”, J. Phys. A: Math. Gen., 38 (2005), 10287 | DOI | MR | Zbl
[31] N. M. Bogolyubov, “Perechislenie ploskikh razbienii i algebraicheskii anzats Bete”, Teor. Mat. Fiz., 150 (2007), 193 | MR | Zbl
[32] N. I. Abarenkova, A. G. Pronko, “Temperaturnyi korrelyator v absolyutno anizotropnom $XXZ$-magnetike Geizenberga”, Teor. Mat. Fiz., 131 (2002), 288 | MR | Zbl
[33] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR