Four-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 34-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Exactly solvable four-vertex model is considered on a square grid with the different boundary conditions. The application of the Algebraic Bethe Ansatz method allows to calculate the partition function of the model and to establish the connection of the scalar product of the state vectors with the generating function of the column and raw strict boxed plane partitions. The tiling model on a periodic grid is discussed.
@article{ZNSL_2007_347_a2,
     author = {N. M. Bogolyubov},
     title = {Four-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--55},
     year = {2007},
     volume = {347},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a2/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
TI  - Four-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 34
EP  - 55
VL  - 347
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a2/
LA  - ru
ID  - ZNSL_2007_347_a2
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%T Four-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 34-55
%V 347
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a2/
%G ru
%F ZNSL_2007_347_a2
N. M. Bogolyubov. Four-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 34-55. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a2/

[1] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[2] E. H. Lieb, F. Y. Wu, “Two-dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, 1, eds. by C. Domb and M. S. Green, Academic Press, London, 1972, 322

[3] W. Li, H. Park, and M. Widom, “Finite-size scaling amplitudes in a random tiling model”, J. Phys. A, 23 (1990), L573 | DOI | MR

[4] W. Li and H. Park, “Logarithmic singularity in the surface free energy near commensurate-incommensurate transitions”, J. Phys. A, 24 (1991), 257 | DOI

[5] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391 | DOI | MR | Zbl

[6] V. Korepin and P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053 | DOI | MR | Zbl

[7] N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525 | DOI | MR | Zbl

[8] D. Allison and N. Reshetikhin, “Numerical study of the 6-vertex model with domain wall boundary conditions”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1847 | MR | Zbl

[9] O. Syljuåsen and M. Zvonarev, “Directed-loop monte carlo simulations of vertex models”, Phys. Rev. E, 70 (2004), 016118 | DOI

[10] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139 | DOI | MR | Zbl

[11] F. Colomo and A. G. Pronko, “Square ice, alternating sign matrices, and classical orthogonal polynomials”, J. Stat. Mech. JSTAT, 2005, P01005 | DOI | MR | Zbl

[12] P. L. Ferrari and H. Spohn, Domino tilings and the six-vertex model at its free fermion, arXiv: /cond-mat/0605406

[13] L. D. Faddeev, “Quantum inverse scattering method”, Sov. Sci. Sect. C, Math. Phys. Rev., 1 (1980), 107 | Zbl

[14] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[15] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[16] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[17] G. E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[18] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. Anal. Pril., 30:2 (1996), 19 | MR | Zbl

[19] A. M. Vershik, S. Kerov, “Asimptotika mer Plansherelya simmetricheskikh grupp i predelnaya forma diagramm Yunga”, Dokl. Akad. Nauk SSSR, 233 (1977), 1024 | MR | Zbl

[20] A. Okounkov and N. Reshetikhin, “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. American Math. Soc., 16 (2003), 58 | MR

[21] R. Rajesh and D. Dhar, “An exactly solvable anisotropic directed percolation model in three dimensions”, Phys. Rev. Lett., 81 (1998), 1646 | DOI

[22] J. W. Essam and A. J. Guttmann, “Vicious walkers and directed polymer networks in general dimensions”, Phys. Rev. E, 52 (1995), 5849 | DOI | MR

[23] A. J. Guttmann, A. L. Owczarec, and X. G. Viennot, “Vicious walkers and Young tableaux. I: Without walls”, J. Phys. A: Math. Gen., 31 (1998), 8123 | DOI | MR | Zbl

[24] C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux. II: With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835 | DOI | MR | Zbl

[25] N. M. Bogolyubov, “20 tsepochka Geizenberga i sluchainye bluzhdaniya”, Zap. Nauchn. Semin. POMI, 325, 2005, 13 | Zbl

[26] N. M. Bogolyubov, “Integriruemye modeli dlya zlovrednykh i druzhestvennykh peshekhodov”, Zap. Nauchn. Semin. POMI, 335, 2006, 59 | Zbl

[27] A. Okounkov, N. Reshetikhin, and C. Vafa, Quantum Calabi-Yau and classical crystals, arXiv: /hep-th/0309208 | MR

[28] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415 | DOI | MR | Zbl

[29] N. V. Tsilevich, “Kvantovyi metod obratnoi zadachi dlya $q$-bozonnoi modeli i simmetricheskie funktsii”, Funkts. Anal. i Pril., 40 (2006), 53 | MR | Zbl

[30] K. Shigechi and M. Uchiyama, “Boxed skew plane partition and integrable phase model”, J. Phys. A: Math. Gen., 38 (2005), 10287 | DOI | MR | Zbl

[31] N. M. Bogolyubov, “Perechislenie ploskikh razbienii i algebraicheskii anzats Bete”, Teor. Mat. Fiz., 150 (2007), 193 | MR | Zbl

[32] N. I. Abarenkova, A. G. Pronko, “Temperaturnyi korrelyator v absolyutno anizotropnom $XXZ$-magnetike Geizenberga”, Teor. Mat. Fiz., 131 (2002), 288 | MR | Zbl

[33] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR