Parabolic twists for linear algebras $A_{n-1}$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 187-213

Voir la notice de l'article provenant de la source Math-Net.Ru

New solutions of twist equations for universal enveloping algebras $U(A_{n-1})$ are found. They can be presented as products of full chains of extended Jordanian twists $\mathcal F_{\widehat{ch}}$, Abelian factors (“rotations”) $\mathcal F^R$ and sets of quasi-Jordanian twists $\mathcal F^{\widehat J}$. The latter are the generalizations of Jordanian twists (with carrier $b^2$) for special deformed extensions of the Hopf algebra $U(b^2)$. The carrier subalgebra $g_{\mathcal P}$ for the composition $\mathcal F_{\mathcal P}=\mathcal F^{\widehat J}\mathcal F^R\mathcal F_{\widehat{ch}}$ is a nonminimal parabolic subalgebra in $A_{n-1}$, $g_{\mathcal P}\cap\mathbb N_g^-\ne\varnothing$. The parabolic twisting elements $\mathcal F_{\mathcal P}$ are obtained in the explicit form. The details of the construction are illustrated by considering the examples $n=4$ and $n=11$.
@article{ZNSL_2007_347_a11,
     author = {V. D. Lyakhovsky},
     title = {Parabolic twists  for linear algebras $A_{n-1}$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--213},
     publisher = {mathdoc},
     volume = {347},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a11/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Parabolic twists  for linear algebras $A_{n-1}$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 187
EP  - 213
VL  - 347
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a11/
LA  - en
ID  - ZNSL_2007_347_a11
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Parabolic twists  for linear algebras $A_{n-1}$
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 187-213
%V 347
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a11/
%G en
%F ZNSL_2007_347_a11
V. D. Lyakhovsky. Parabolic twists  for linear algebras $A_{n-1}$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 187-213. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a11/