Parabolic twists for linear algebras $A_{n-1}$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 187-213
Voir la notice de l'article provenant de la source Math-Net.Ru
New solutions of twist equations for universal enveloping algebras $U(A_{n-1})$ are found. They can be presented as products of full chains of extended Jordanian twists $\mathcal F_{\widehat{ch}}$, Abelian factors (“rotations”) $\mathcal F^R$ and sets of quasi-Jordanian twists $\mathcal F^{\widehat J}$. The latter are the generalizations of Jordanian twists (with carrier $b^2$) for special deformed extensions of the Hopf algebra $U(b^2)$. The carrier subalgebra $g_{\mathcal P}$ for the composition $\mathcal F_{\mathcal P}=\mathcal F^{\widehat J}\mathcal F^R\mathcal F_{\widehat{ch}}$ is a nonminimal parabolic subalgebra in $A_{n-1}$, $g_{\mathcal P}\cap\mathbb N_g^-\ne\varnothing$. The parabolic twisting elements $\mathcal F_{\mathcal P}$ are obtained in the explicit form. The details of the construction are illustrated by considering the examples $n=4$ and $n=11$.
@article{ZNSL_2007_347_a11,
author = {V. D. Lyakhovsky},
title = {Parabolic twists for linear algebras $A_{n-1}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--213},
publisher = {mathdoc},
volume = {347},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a11/}
}
V. D. Lyakhovsky. Parabolic twists for linear algebras $A_{n-1}$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 187-213. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a11/