@article{ZNSL_2007_347_a10,
author = {P. P. Kulish and P. D. Ryasichenko},
title = {Algebraic {Bethe} ansatz for seven-vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--186},
year = {2007},
volume = {347},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a10/}
}
P. P. Kulish; P. D. Ryasichenko. Algebraic Bethe ansatz for seven-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 178-186. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a10/
[1] L. D. Faddeev, “How algebraic Bethe Ansatz works for integrable model”, Quantum Symmetries /Symmetries Quantiques, eds. A. Connes et al., North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[2] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl
[3] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transformed method. Recent developments”, Lect. Notes Phys., 151, 1982, 61–159 | MR
[4] P. P. Kulish, P. D. Ryasichenko, “Spinovaya tsepochka, svyazannaya s kvantovoi superalgebroi $sl_q(1/1)$”, Zap. nauchn. semin. POMI, 325, 2005, 146–162 | MR | Zbl
[5] V. Korepin, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[6] E. V. Damaskinskii, P. P. Kulish, “Simmetrii, svyazannye s uravneniem Yanga–Bakstera i uravneniem otrazheniya”, Zap. nauchn. semin. POMI, 269, 2000, 180–192 | MR | Zbl
[7] F. C. Alcaraz, M. Droz, M. Henkel and V. Rittenberg, “Reactin-diffusion processes, critical dynamics, and quantum chains”, Ann. Phys., 230 (1994), 250–302 | DOI | MR | Zbl
[8] H. Hinrichsen and V. Rittenberg, “A two-parameter deformation of the $su(1,1)$ superalgebra and $XY$ quantum spin chain in a magnetic field”, Phys. Lett. B, 275 (1992), 350–354 | DOI | MR