Note on renormalization of quantum equation of motion
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 30-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Infinite part of one-prong vertex for matrix $\sigma$ model calculate in background field formalism in one-loop approach. Is shown that renormalizations of quantum equation of motion and effective action coincide if the additional factor has been introduced.
@article{ZNSL_2007_347_a1,
     author = {A. A. Bagaev},
     title = {Note on renormalization of quantum equation of motion},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--33},
     year = {2007},
     volume = {347},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a1/}
}
TY  - JOUR
AU  - A. A. Bagaev
TI  - Note on renormalization of quantum equation of motion
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 30
EP  - 33
VL  - 347
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a1/
LA  - ru
ID  - ZNSL_2007_347_a1
ER  - 
%0 Journal Article
%A A. A. Bagaev
%T Note on renormalization of quantum equation of motion
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 30-33
%V 347
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a1/
%G ru
%F ZNSL_2007_347_a1
A. A. Bagaev. Note on renormalization of quantum equation of motion. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 20, Tome 347 (2007), pp. 30-33. http://geodesic.mathdoc.fr/item/ZNSL_2007_347_a1/

[1] L. D. Faddeev, Teor. Mat. Fiz., 148 (2006), 133 | MR | Zbl

[2] I. Jack, H. Osborn, Nucl. Phys. B, 207 (1982), 474 | DOI

[3] L. Faddeev, “Mass in Quantum Yang-Mills Theory (comment on Clay Millenium Problem)”, Bull. Brazil Math. Soc. (N.S.), 33(2) (2002), 201–212 | DOI | MR | Zbl

[4] A. M. Polyakov, Kalibrovochnye polya i struny, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999, per.s angl. | Zbl

[5] P. Ramon, Teoriya polya. Sovremennyi vvodnyi kurs, Mir, M., 1984, Per. s angl | MR

[6] A. A. Bagaev,, “Perenormirovka kvantovykh uravnenii dvizheniya dlya polei Yanga–Millsa v formalizme fonovogo polya”, Zap. nauchn. semin. POMI, 325, 2005, 5 | Zbl

[7] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR