Improving Chistyakov's bounds for
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 103-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents new two-sided bounds for the Perron root of a block-partitioned nonnegative matrix, improving Chistyakov's bounds. The equality cases are analyzed. As an application, new conditions sufficient for a complex matrix to be a nonsingular $H$-matrix are obtained.
@article{ZNSL_2007_346_a7,
     author = {L. Yu. Kolotilina},
     title = {Improving {Chistyakov's} bounds for},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--118},
     year = {2007},
     volume = {346},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a7/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Improving Chistyakov's bounds for
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 103
EP  - 118
VL  - 346
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a7/
LA  - ru
ID  - ZNSL_2007_346_a7
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Improving Chistyakov's bounds for
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 103-118
%V 346
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a7/
%G ru
%F ZNSL_2007_346_a7
L. Yu. Kolotilina. Improving Chistyakov's bounds for. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 103-118. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a7/

[1] Yu. A. Alpin, L. Yu. Kolotilina, “Obobschennoe svoistvo monotonnosti perronovskogo kornya”, Zap. nauchn. semin. POMI, 334, 2006, 13–29 | MR

[2] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | MR | Zbl

[3] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102

[4] V. P. Chistyakov, “K otsenke perronova kornya neotritsatelnykh matrits”, Dokl. AN SSSR, 246 (1979), 548–550 | MR | Zbl

[5] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[6] L. Cvetković, V. Kostić, R. S. Varga, “A new Geršgorin-type eigenvalue inclusion set”, Electr. Trans. Numer. Anal., 18 (2004), 73–80 | MR | Zbl

[7] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonally dominant and $M$-matrices”, Linear Algebra Appl., 268 (1992), 257–268 | DOI | MR | Zbl

[8] R. S. Varga, Geršgorin and His Circles, Springer, 2004 | MR