Bounds for the determinants and inverses of certain $H$-matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 81-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies a subclass, referred to as $PBDD(n_1,n_2)$, of the class of nonsingular $H$-matrices. A new characterization of matrices in $PBDD(n_1,n_2)$ is suggested. Two-sided bounds for the determinants of matrices in the class $PBDD(n_1,n_2)$ are derived, and their applications to strictly diagonally dominant matrices and to matrices with the Ostrowski–Brauer diagonal dominance are presented. An upper bound for the infinity norms of the inverses of matrices in $PBDD(n_1,n_2)$ is considered. Extensions to the case of block $k\times k$ matrices, $k\ge 2$, are addressed.
@article{ZNSL_2007_346_a6,
     author = {L. Yu. Kolotilina},
     title = {Bounds for the determinants and inverses of certain $H$-matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--102},
     year = {2007},
     volume = {346},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a6/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Bounds for the determinants and inverses of certain $H$-matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 81
EP  - 102
VL  - 346
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a6/
LA  - ru
ID  - ZNSL_2007_346_a6
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Bounds for the determinants and inverses of certain $H$-matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 81-102
%V 346
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a6/
%G ru
%F ZNSL_2007_346_a6
L. Yu. Kolotilina. Bounds for the determinants and inverses of certain $H$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 81-102. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a6/

[1] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | MR | Zbl

[2] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. SIAM, 11 (1963), 95–104 | MR | Zbl

[3] L. Cvetković, V. Kostić, R. S. Varga, “A new Geršgorin-type eigenvalue inclusion set”, Electr. Trans. Numer. Anal., 18 (2004), 73–80 | MR | Zbl

[4] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonally dominant and M-matrices”, Linear Algebra Appl., 268 (1992), 257–268 | DOI | MR | Zbl

[5] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991 | MR

[6] Ting-Zhu Huang, Xing-Ping Liu, “Estimations for certain determinants”, Comp. Math. Appl., 50 (2005), 1677–1684 | DOI | MR | Zbl

[7] Jianzhou Liu, Fuzhen Zhang, “Disc separation of the Schur complement of diagonally dominant matrices”, SIAM J. Matrix Anal. Appl., 27 (2005), 665–674 | DOI | MR | Zbl

[8] N. Morača, “Upper bounds for the infinity norm of the inverse of SDD and $\mathcal{S}$-SDD matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl

[9] R. Oeder, “Problem E 949”, Amer. Math. Monthly, 58 (1951), 37 | DOI | MR

[10] A. M. Ostrowski, “Sur la détermination des bornes inférieures pour une classe des déterminants”, Bull. Sci. Math. (2), 61 (1937), 19–32

[11] A. M. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR

[12] A. M. Ostrowski, “Note on bounds for determinants with dominant principal diagonal”, Proc. Amer. Math. Soc., 3 (1952), 26–30 | DOI | MR | Zbl

[13] B. Price, “Bounds for determinants with dominant principal diagonal”, Proc. Amer. Math. Soc., 2 (1951), 497–502 | DOI | MR | Zbl

[14] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[15] R. S. Varga, “On diagonal dominance arguments for bounding $\|A^{-1}\|_\infty$”, Linear Algebra Appl., 14 (1976), 211–217 | DOI | MR | Zbl

[16] R. S. Varga, Geršgorin and His Circles, Springer Series Comput. Math., 36, Springer, 2004 | MR

[17] Xue-Rong Yong, “Two properties of diagonally dominant matrices”, Numer. Linear Algebra Appl., 3 (1996), 173–177 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl