On normal Hankel matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 63-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of characterizing normal Hankel matrices is still far from being solved completely. Partial results available mainly are descriptions of certain subsets of the class of normal Hankel matrices. These subsets were found separately and using different arguments. This paper presents a general approach allowing, in particular, to obtain all the known subsets as special cases. Normal Hankel matrices outside of these subsets correspond to the main (and the most difficult) case of our treatment. At the moment, this case defies complete analysis. However, we show that unknown types of normal Hankel matrices can only be found within a new and very interesting matrix class that extends (and contains) the class of $\phi$-circulants.
@article{ZNSL_2007_346_a5,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {On normal {Hankel} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--80},
     year = {2007},
     volume = {346},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - On normal Hankel matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 63
EP  - 80
VL  - 346
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a5/
LA  - ru
ID  - ZNSL_2007_346_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A V. N. Chugunov
%T On normal Hankel matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 63-80
%V 346
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a5/
%G ru
%F ZNSL_2007_346_a5
Kh. D. Ikramov; V. N. Chugunov. On normal Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 63-80. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a5/

[1] Kh. D. Ikramov, “Ob opisanii normalnykh teplitsevykh matrits”, Zh. vychisl. matem. matem. fiz., 34 (1994), 473–479 | MR | Zbl

[2] Kh. D. Ikramov, “O klassifikatsii normalnykh teplitsevykh matrits s veschestvennymi elementami”, Matem. zametki, 57 (1995), 670–680 | MR | Zbl

[3] Kh. D. Ikramov, V. N. Chugunov, “Kriterii normalnosti kompleksnoi teplitsevoi matritsy”, Zh. vychisl. matem. matem. fiz., 36:2 (1996), 3–10 | MR | Zbl

[4] V. I. Gelfgat, “Kriterii normalnosti teplitsevoi matritsy”, Zh. vychisl. matem. matem. fiz., 35 (1995), 1428–1432 | MR

[5] D. R. Farenick et al, “Normal Toeplitz matrices”, SIAM J. Matrix Anal. Appl., 17 (1996), 1037–1043 | DOI | MR | Zbl

[6] K. Ito, “Every normal Toeplitz matrix is either of type, I or of type, II”, SIAM J. Matrix Anal. Appl., 17 (1996), 998–1006 | DOI | MR | Zbl

[7] A. Arimoto, “A simple proof of the classification of normal Toeplitz matrices”, Electronic J. Linear Algebra, 9 (2002), 108–111 | MR | Zbl

[8] G. Gu, L. Patton, “Commutation relations for Toeplitz and Hankel matrices”, SIAM J. Matrix Anal. Appl., 24 (2003), 728–746 | DOI | MR | Zbl

[9] Kh. D. Ikramov, “K voprosu ob opisanii normalnykh gankelevykh matrits”, Fundam. prikl. matem., 3 (1997), 809–819 | MR | Zbl

[10] Kh. D. Ikramov, V. N. Chugunov, “O kososimmetrichnoi chasti proizvedeniya teplitsevykh matrits”, Matem. zametki, 63 (1998), 138–141 | MR | Zbl

[11] Kh. D. Ikramov, V. N. Chugunov, “Ob odnom novom klasse normalnykh gankelevykh matrits”, Vestn. MGU. Seriya “Vychisl. matematika i kibernetika”, 2007, no. 1, 10–13 | MR