@article{ZNSL_2007_346_a5,
author = {Kh. D. Ikramov and V. N. Chugunov},
title = {On normal {Hankel} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--80},
year = {2007},
volume = {346},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a5/}
}
Kh. D. Ikramov; V. N. Chugunov. On normal Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 63-80. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a5/
[1] Kh. D. Ikramov, “Ob opisanii normalnykh teplitsevykh matrits”, Zh. vychisl. matem. matem. fiz., 34 (1994), 473–479 | MR | Zbl
[2] Kh. D. Ikramov, “O klassifikatsii normalnykh teplitsevykh matrits s veschestvennymi elementami”, Matem. zametki, 57 (1995), 670–680 | MR | Zbl
[3] Kh. D. Ikramov, V. N. Chugunov, “Kriterii normalnosti kompleksnoi teplitsevoi matritsy”, Zh. vychisl. matem. matem. fiz., 36:2 (1996), 3–10 | MR | Zbl
[4] V. I. Gelfgat, “Kriterii normalnosti teplitsevoi matritsy”, Zh. vychisl. matem. matem. fiz., 35 (1995), 1428–1432 | MR
[5] D. R. Farenick et al, “Normal Toeplitz matrices”, SIAM J. Matrix Anal. Appl., 17 (1996), 1037–1043 | DOI | MR | Zbl
[6] K. Ito, “Every normal Toeplitz matrix is either of type, I or of type, II”, SIAM J. Matrix Anal. Appl., 17 (1996), 998–1006 | DOI | MR | Zbl
[7] A. Arimoto, “A simple proof of the classification of normal Toeplitz matrices”, Electronic J. Linear Algebra, 9 (2002), 108–111 | MR | Zbl
[8] G. Gu, L. Patton, “Commutation relations for Toeplitz and Hankel matrices”, SIAM J. Matrix Anal. Appl., 24 (2003), 728–746 | DOI | MR | Zbl
[9] Kh. D. Ikramov, “K voprosu ob opisanii normalnykh gankelevykh matrits”, Fundam. prikl. matem., 3 (1997), 809–819 | MR | Zbl
[10] Kh. D. Ikramov, V. N. Chugunov, “O kososimmetrichnoi chasti proizvedeniya teplitsevykh matrits”, Matem. zametki, 63 (1998), 138–141 | MR | Zbl
[11] Kh. D. Ikramov, V. N. Chugunov, “Ob odnom novom klasse normalnykh gankelevykh matrits”, Vestn. MGU. Seriya “Vychisl. matematika i kibernetika”, 2007, no. 1, 10–13 | MR