On unitarily transposable matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 39-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Matrices $A\in M_n(\mathbf C)$ such that
\begin{equation}
A^T=Q^*AQ
\tag{1}
\end{equation}
for a certain unitary matrix $Q$ are examined. Several classes of matrices with this property are indicated. Under certain assumptions on $A$, two conditions necessary for (1) to hold
are provided.
@article{ZNSL_2007_346_a3,
author = {Kh. D. Ikramov},
title = {On unitarily transposable matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--48},
publisher = {mathdoc},
volume = {346},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a3/}
}
Kh. D. Ikramov. On unitarily transposable matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 39-48. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a3/