On unitarily transposable matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 39-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Matrices $A\in M_n(\mathbf C)$ such that \begin{equation} A^T=Q^*AQ \tag{1} \end{equation} for a certain unitary matrix $Q$ are examined. Several classes of matrices with this property are indicated. Under certain assumptions on $A$, two conditions necessary for (1) to hold are provided.
@article{ZNSL_2007_346_a3,
     author = {Kh. D. Ikramov},
     title = {On unitarily transposable matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--48},
     year = {2007},
     volume = {346},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On unitarily transposable matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 39
EP  - 48
VL  - 346
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a3/
LA  - ru
ID  - ZNSL_2007_346_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On unitarily transposable matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 39-48
%V 346
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a3/
%G ru
%F ZNSL_2007_346_a3
Kh. D. Ikramov. On unitarily transposable matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 39-48. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a3/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1990 | MR

[2] Kh. D. Ikramov, “Ob unitarnom podobii vzaimno transponirovannykh matrits”, DAN, 378:5 (2001), 592–593 | MR | Zbl

[3] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type, I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl

[4] Kh. D. Ikramov, “Kanonicheskaya forma Shura unitarno kvazidiagonalizuemoi matritsy”, Zh. vychisl. matem. matem. fiz., 37 (1997), 1411–1415 | MR | Zbl

[5] Kh. D. Ikramov, “Ob odnom kriterii kvazidiagonalizuemosti veschestvennykh matrits”, Zh. vychisl. matem. matem. fiz., 40 (2000), 6–20 | MR | Zbl

[6] J. Vermeer, “Examples concerning orthogonal (unitary) similarity of matrices”, Linear Algebra Appl., 428 (2008), 382–392 | DOI | MR | Zbl