Wavelet decompositions on a manifold
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 26-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A general method for constructing chains of embedded spline spaces on a smooth (not necessarily compact) manifold is suggested. A wavelet decomposition is obtained for the case of an arbitrary vector space. The results are illustrated by constructing a wavelet decompositon of a chain of embedded spaces of $B_\varphi$-splines of zero order on a smooth manifold.
@article{ZNSL_2007_346_a2,
     author = {Yu. K. Dem'yanovich and A. V. Zimin},
     title = {Wavelet decompositions on a~manifold},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--38},
     year = {2007},
     volume = {346},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a2/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
AU  - A. V. Zimin
TI  - Wavelet decompositions on a manifold
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 26
EP  - 38
VL  - 346
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a2/
LA  - ru
ID  - ZNSL_2007_346_a2
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%A A. V. Zimin
%T Wavelet decompositions on a manifold
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 26-38
%V 346
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a2/
%G ru
%F ZNSL_2007_346_a2
Yu. K. Dem'yanovich; A. V. Zimin. Wavelet decompositions on a manifold. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 26-38. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a2/

[1] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, SPb., 1994 | MR

[2] S. Malla, Veivlety v obrabotke signalov, M., 2005

[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, M., 2005 | MR

[4] J. Maes, A. Bultheel, “Stability analysis of biorthogonal multiwavelets whose duals are not in $L2$ and its application to local semiorthogonal lifting”, Applied Numerical Mathematics, 2007 (to appear) | MR

[5] Yu. K. Demyanovich, “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Doklady RAN, 401:4 (2005), 439–442 | MR

[6] Yu. K. Demyanovich, “Vlozhennost i vspleskovye predstavleniya prostranstv minimalnykh splainov”, Probl. matem. analiza, 35, 2007, 13–41