Conjugate-normal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In studying the reduction of a complex $n\times n$ matrix $A$ to its Hessenberg form by the Arnoldi algorithm, T. Huckle discovered that an irreducible Hessenberg normal matrix with a normal leading principal $m\times m$ submatrix, where $1, actually is tridiagonal. We prove a similar assertion for the conjugate-normal matrices, which play the same role in the theory of unitary congruences as the conventional normal matrices in the theory of unitary similarities. This fact is stated as a purely matrix-theoretic theorem, without any reference to Arnoldi-like algorithms.
@article{ZNSL_2007_346_a1,
     author = {M. Ghasemi Kamalvand and Kh. D. Ikramov},
     title = {Conjugate-normal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--25},
     year = {2007},
     volume = {346},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a1/}
}
TY  - JOUR
AU  - M. Ghasemi Kamalvand
AU  - Kh. D. Ikramov
TI  - Conjugate-normal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 21
EP  - 25
VL  - 346
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a1/
LA  - ru
ID  - ZNSL_2007_346_a1
ER  - 
%0 Journal Article
%A M. Ghasemi Kamalvand
%A Kh. D. Ikramov
%T Conjugate-normal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 21-25
%V 346
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a1/
%G ru
%F ZNSL_2007_346_a1
M. Ghasemi Kamalvand; Kh. D. Ikramov. Conjugate-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 21-25. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a1/

[1] T. Huckle, “The Arnoldi method for normal matrices”, SIAM J. Matrix Anal. Appl., 15:2 (1994), 479–489 | DOI | MR | Zbl

[2] Kh. D. Ikramov, L. Elzner, “O normalnykh matritsakh s normalnymi glavnymi podmatritsami”, Zap. nauchn. semin. POMI, 229, 1995, 63–94 | MR